首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new manganite type CMR material, La0.7Hg0.3MnO3 has been successfully synthesized and has been found to exhibit magnetoresistance (≈9%) at low fields (≈1.5 kG). The synthesis has been carried out through a solid state reaction route consisting of the formation of La0.7MnO3 followed by diffusion of Hg leading to La0.7Hg0.3MnO3. The as grown samples are polycrystalline and correspond to an orthorhombic unit cell with the lattice parameters; a=5.5183 Å, b=5.6383 Å and c=7.5368 Å. The typical grain size as revealed by scanning electron microscopy is in the range of 0.5–2 μm. The ρT behaviour shows a peak at TIM=227 K. The ρT behaviour above this temperature corresponds to that of an insulator and below this to that of a metal. The ρT behaviour remains unaltered when a magnetic field (Hdc=1.5 kG) is applied. However, with this magnetic field a drop in the resistivity is observed up to 77 K. At room temperature the magnetoresistance ratio (MRR) is too small but it steadily increases as the temperature is decreased. Thus, MRRs at 227.13 and 77 K are 3.41 and 9.05%, respectively, in an applied field of Hdc=1.5 kG. At a given temperature the variation in MRR with field Hdc is rapid at lower field values (Hdc<1.2 kG) and scales linearly for higher field values (Hdc>1.2 kG). It may be mentioned that the present work on the synthesis and magnetoresistance behaviour of La0.7Hg0.3MnO3, is the first of its type.  相似文献   

2.
LaFe13-xMx (M = Si, Al) alloys are promising for use in magnetic refrigeration. However, they require long annealing time (30 days) in order to optimize the magnetocaloric properties. Research has shown that the addition of extra La in off-stoichiometric alloys can greatly shorten the annealing time. Therefore, the purpose of this study is to investigate the influence of the extra addition of La on the annealing properties of a new off-stoichiometric La1.7Fe11.6Al1.4-xSix (x = 0, 0.1, 0.4) alloys. It was demonstrated that after a 36h annealing time, a large volume fraction of 1:13 magnetocaloric phase was obtained for all alloys. Further microstructural analysis of the off-stoichiometric La1.7Fe11.6Al1.4-xSix alloys revealed a facet-like grain morphology. The La1.7Fe11.6Al1.4 and La1.7Fe11.6Al1Si0.4 alloys were shown to contain large 1:13 phase precipitates separated in a La-rich matrix, while the La1.7Fe11.6Al1.3Si0.1 alloy had a continuous 1:13 phase matrix with a fine dispersion of La-rich precipitates throughout. When the magnetic field varied between 0 and 2 T, the corresponding magnetic entropy change and relative cooling capacity for the La1.7Fe11.6Al1.3Si0.1 specimen were determined as 4.58 J/kg K and 173.6 J/kg, respectively. More importantly, the La1.7Fe11.6Al1.3Si0.1 alloy displayed only a slight volume change when the meta-magnetic phase transition occurred, which is promising for cyclic use.  相似文献   

3.
The fact that there are Mn2+ at the A sites in the ABO3 perovskite phase of manganites with the nominal composition La0.6-xNdxSr0.1MnO3 showed by detailed experimental study and theoretical calculations.The magnetic moments of these Mn2+ are antiparallel to those of the Mn ions at the B sites.The content of the Mn2+ increases as the average ionic radius,(rA),of the ions at A sites decreases,resulting in the experimentally observed phenomenon that the content of the Mn3O4 phase in the manganites decreases with decreasing 〈rA〉.  相似文献   

4.
The structural and magnetic properties of perovskite oxides La0.7Ca0.3−xKxMnO3 (0 ≤ x ≤ 0.15) have been investigated to explore the influence of the A-site cation size-disorder (σ2). The materials were prepared by the solid-state method and then characterized by X-ray diffraction (XRD). The XRD data have been analyzed by Rietveld refinement technique. For K doping concentration x ≤ 0.075, the samples crystallize in the orthorhombic structure, while for x ≥ 0.1, the structure becomes rhombohedral. The variation of the magnetization M as a function of the applied magnetic field μ0H reveals the presence of a structural distortion leading to a reduction of the magnetization at low μ0H values. When increasing μ0H, the structural distortion decreases and for a high applied magnetic field, the M (μ0H) curves saturate indicating the disappearance of the structural distortion. The influence of K doping concentration and the applied magnetic field on the magnetocaloric properties has been considered. A large magnetic-entropy change (|ΔSM|  5 J/kg K) is obtained in all samples at Curie temperatures between 270 and 280 K for an applied magnetic field of 3 T. These results show that these materials can be used as candidates for magnetic refrigerants near room temperature.  相似文献   

5.
La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and the alloys have a single LaMg phase when x 〈 0.4. The lattice parameter of the LaMg phase decreases obviously after the partial substitution of Mg by Al. However, further substitution of Mg by Al leads to the coexistence of multiple phases when x ≥ 0.6. The alloys consist of the LaMg, LaAl, LaAl2, and La5Al4 phases. The LaMg phase decreases, whereas the La5Al4 phase increases with the increase in x. The Al-substituted La(Mgo.6Al0.4) alloy can be hydrogenated into the tetragonal LaH3, cubic LaH3, MgH2, and LaPd under 5 MPa at 473 K for 5 d.  相似文献   

6.
Polycrystalline samples of potassium doped lanthanum manganites having nanometric crystallite size have been synthesized by pyrophoric method. The Curie temperature (TC) of the prepared samples is found to be strongly dependent on K content and spans between 260 and 309 K. Close to TC, large change in magnetic entropy has been observed in all the samples. The maximum magnetic entropy change observed for samples with different concentration of K, exhibits a linear dependence with the applied magnetic field. Adiabatic temperature change at TC at 1 T also increases with K doping and attains a maximum of 2.1 K for La0.85K0.15MnO3. Estimated relative cooling power of La1−xKxMnO3 compounds is nearly one-third of pure Gd. In addition to the tuneability of TC between 260 and 310 K, higher chemical stability, lower eddy current heating and inexpensive preparation technique; the magnetic entropy change in La0.85K0.15MnO3 compound at 1 T magnetic field is found to be 3.00 J/kg K and is 89% to that known for the prototype magnetic refrigerant (pure Gd). Our result on magnetocaloric properties suggests that La1−xKxMnO3 compounds are attractive as a possible refrigerant for near room temperature magnetic refrigeration.  相似文献   

7.
An experimental investigation of the hydrogen absorption rate in the two-phase (–β) region of La1.5Ni0.5Mg17 powder under the condition of various pressures and temperatures is presented. The results are well interpreted using the Jander diffusion model, [1−(1−ξ)1/3]2=k(T,P)t, which suggests that the rate-controlling step of hydrogen absorption in La1.5Ni0.5Mg17 is three-dimensional diffusion. An apparent activation energy for such diffusion process of 90±1 kJ/mol H2 has been obtained from the absorption data.  相似文献   

8.
一步法合成La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-Ce0.8Gd0.2O2-δ(LSCFN-CGO)混合电导对称电极,并采用La0.8Sr0.2Ga0.83Mg0.17O3-δ(LSGM)作为电解质制备了结构为LSCFN-CGO‖LSGM‖LSCFN-CGO的对称电池。分别使用X射线衍射(XRD)仪和扫描电子显微镜(SEM)对LSCFN-CGO粉体物相及电极微观结构进行分析。一步法制得的LSCFN-CGO电极粉体为纯相,LSCFN钙钛矿相与CGO萤石相具备极好的化学相容性,且烧结得到了良好微观结构的对称电极。采用H2(3%H2O)、C3H8(3%H2O)为燃料气测试电池性能,850℃电池最大功率密度可分别达980和869mW/cm2。稳定性测试在C3H8(3%H2O)气氛中0.3 A/cm2的恒流放电条件下进行,全程共420 h,衰减较小,期间进行8次电极氧化还原循环,对称电极具有理想的碳基燃料下氧化还原再生能力。结果表明,采用一步法合成混合电导电极是一种简便、优化的电极制备方法,具有广阔的应用前景。  相似文献   

9.
The effect of substituting Sr for Ba on the magneto-transport and magnetic properties of (La1/3Sm2/3)0.67Ba0.33MnO3 system, has been investigated. The samples, (La1/3Sm2/3)0.67Ba0.33−xSrxMnO3 (x = 0.0, 0.1, 0.2 and 0.33), synthesized by citrate gel route, crystallize in an orthorhombic structure (space group Pnma, no. 62). The unit cell volume decreases while the metal-insulator transition temperature (TMI) increases with increasing Sr content. The localization of charge carriers occurs at low temperatures and becomes more pronounced with decreasing Sr content which leads to an enhancement of resistivity. This could be understood by the variation of MnOMn bond-distance and angle. Reappearance of semiconducting behavior (dρ/dT < 0) is observed only in samples with x = 0 and x = 0.1 below certain temperature (T < TMI). These samples exhibit thermal irreversibility behavior for a field-cooled (FC) and zero-field-cooled (ZFC) magnetization data in a magnetic field of 100 Oe. This is ascribed to the competition between the superexchange and double exchange interactions. The change in physical properties has been correlated to chemical parameters such as ionic radii, tolerance factor, electronegativity and variation in MnOMn angle.  相似文献   

10.
The corrosion behavior of CoCrFeNiMo_x alloys was investigated in aqueous environments, NaCl and H_2SO_4 solutions,respectively, to simulate typical neutral and acidic conditions. The cyclic polarization curves in NaCl and the potentiodynamic curves in H_2SO_4 clearly reveal the beneficial effects of Mo and the detrimental effect of σ-phase on the corrosion resistance. The X-ray photoelectron spectroscopy results of CoCrFeNiMo_x alloys in H_2SO_4 solution indicate that Cr and Mo predominate the corroded surface of the alloys, where Mo primarily exists in the form of MoO_3.  相似文献   

11.
The high temperature phase transitions of orthorhombic La0.95MnO3 from room temperature to 1273 K were studied using high temperature XRD technique in air. Two-phase transitions were found in temperature ranges, 373–473 K and 973–1273 K, respectively. The crystal symmetry increases from orthorhombic to rhombohedral then cubic, while the second transition was not completed in the observation of the present study. The first transition could be due to the depression of Jahn–Teller distortion, while the second one could be caused by the ionic oscillation at high temperature. The lattice thermal expansion coefficients of rhombohedral La0.95MnO3 from 473 to 973 K were also calculated using lattice parameters.  相似文献   

12.
Single crystals of La11V4+V35+O26 were prepared by high temperature reactions in an N2/H2 mixture above the melting point of the initial oxides V2O5–La2O3. X-ray investigations of the dark blue crystals reveal triclinic symmetry, space group with = 7.088 Å, β = 10.213 Å, χ = 10.250 Å, = 89.59°, β = 71.10°, τ = 70.00°, Z = 1. The lanthanum-rich compound exhibits a new structure type characterized by a complicated La11O2619- network with incorporated V4+/V5+ ions. The VO4 tetrahedra are isolated from each other and occupied with V4+ and V5+ in a statistical manner.

Résumé

Einkristalle von La11V4+V35+O26 wurden durch Hochtemperaturreaktionen unter N2/H2-Mischungen oberhalb des Schmelzpunktes von V2O5-La2O3 dargestellt. Die röntgenographische Untersuchung der tiefblauen Kristalle führte zu trikliner Symmetrie, Raumgruppe mit = 7,088 Å, β = 10,213 Å, χ = 10,250 Å = 89,59°, β = 71,10°, τ=70,00°, Z = 1. Die lanthanreiche Verbindung bildet einen neuen Strukturtyp und zeichnet sich durch ein kompliziertes La11O2619- Gerüst aus, in welches V4+/V5+-Ionen eingelagert sind. Die gebildeten VO4-Tetraeder treten zueinander isoliert auf und sind statistisch mit V4+ und V5+ besetzt.  相似文献   


13.
采用热压法在不同烧结压力下制备了高密度掺钙铬酸镧基陶瓷(La0.8Ca0.2Cr0.98O3),研究了烧结压力对La0.8Ca0.2Cr0.98O3陶瓷微观结构、力学性能和导电性能的影响。结果表明,当烧结压力大于58 MPa时,在烧结陶瓷中检测到第二相CaCr2O4的存在。CaCr2O4在烧结陶瓷中有两种完全不同的形态。烧结压力的提高不仅可以提高铬酸镧基陶瓷的密度,同时能显著抑制晶粒长大。随着烧结压力的增加,弯曲强度和硬度逐渐增加,但是断裂韧度和电导率发生下降。  相似文献   

14.
Non-equilibrium phases formed in melt-quenched Cu In(SexTe1-x)2system, where x = 0.1, 0.2, 0.4, 0.5, 0.6,0.8 and 0.9, have been studied using Rietveld refinement of the crystal structure and Raman spectroscopy. Results of structure refinement have showed that all the samples, except the Cu In(Se0.1Te0.9)2, are heterogeneous. All the observed non-equilibrium phases are quaternary system and are found to have chalcopyrite structure(I"42d), in accordance with the Cu In Te2–Cu In Se2 phase diagram. The lattice constants deduced from the refinement have showed linear variation with Se content. A detailed analysis of the characteristic A1 modes present in the Raman spectrum of individual sample has corroborated the results obtained from the structure analysis. The position of A1 mode of individual phase is found to vary linearly with Se content, which suggests that Cu In(SexTe1-x)2system exhibits single-mode behaviour.  相似文献   

15.
A series of the samples La1-x(Sr1-yNay)xMnO3(y=0.0,0.2,0.4,0.6,0.8,1.0)were prepared by the solid-state reaction method.Magnetoresistance enhancement and temperature stability of magnetoresistance in the system La1-x(Sr1-yNay)xMnO3 with unchanged Mn3+/Mn4+ ratio through the doping of both monovalent and divalent elements at A site were studied through the measurements of X-ray diffraction(XRD)patterns,resistivity-temperature(p-T)curves and magnetoresistance-temperature(MR-T)curves.The results indicate that with the increase of Na doping amount,the peak value of MR increases,and it increases from 12.4% for y=0.2 to 50.6% for y=1.0 in the magnetic field B=0.8 T;p-T curves exhibit the double-peak phenomenon,which comes from the competition between the resistivity of surface phase and that of body phase; for the sample of y=0.8,MR increases slowly from 8.3% to 9.4% in the temperature range from 259 to 179 K,and MR is so stable in such a wide temperature range,which provides reference for the research on the temperature stability of MR.  相似文献   

16.
Nanocrystals La1−xSrxFeO3 (x = 0.0, 0.1, 0.2, 0.4 and 0.6), containing crystal grains of mean diameter 12.4 nm (x = 0.0) and 4–7 nm (x = 0.1–0.6), were compacted into nanocrystalline solid materials under static pressures of 0.5, 1.0 and 1.5 GPa in the axial direction at ambient temperature. The results showed that the peak intensities of the electron paramagnetic resonance (EPR) spectra for the nanocrystalline solid materials were about 103–104 times stronger than those of conventional crystals. The EPR spectra changed with grain size and compacting pressure. The characteristics of the EPR spectra of these nanocrystalline solid materials are discussed.  相似文献   

17.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

18.
We have successfully synthesized submicron LaCaMnO powder (with a nominal composition of La0.67Ca0.33MnO3) and the LaCaMnO–Al2O3 composite powder by a newly invented precursor sintering technique. It is found that the precursor solution containing polyacrylamide and citric acid can facilitate the formation of LaCaMnO powders at a relatively lower sintering temperature because PAM and citric acid form a polymer network in the solution and the metal ions evenly distribute in the precursor solution. The critical sintering temperature was carefully studied based on X-ray diffraction patterns and scanning electron microscopy images. It turns out that a low-temperature sintering results in nano-sized powders with a particle size of 50–100 nm, but a high-temperature sintering leads to larger clusters of 1–3 μm. For the LaCaMnO–alumina composites system, secondary phases appear if the sintering temperature is relatively high (1200 °C). Magnetoresistance of the LaCaMnO wafer made from the obtained LaCaMnO powder has a maximum of 56.7% at 269 K. More appealing is that LaCaMnO–alumina composite powders have a very high MR, 82.5%, even in the same order of the MR of the epitaxial-grown LaCaMnO thin film. Besides, the advantages of the PST method include simple equipment, common chemical compounds and low-cost.  相似文献   

19.
An energetically attractive, simple, fast and a novel low temperature (300 °C) solution combustion route for the synthesis of crystalline and homogeneous nanoparticles of lanthanum barium manganese oxide La0.9Ba0.1MnO3+δ (LBMO) is reported. Formation and homogeneity of the solid solutions have been confirmed by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDS) respectively. The Rietveld analysis shows both as-formed as well as calcined samples are in cubic phase with space group pm3m. The microstructure and agglomerated particle size of the compounds are examined by scanning electron microscope. Infrared spectroscopy revealed that both MnOMn bending mode and MnO stretching mode are influenced by calcination temperature. The magnetoresistance measurement on sintered LBMO pellet exhibits a broad metal–insulator transition (TM-I) at around 228 K. At 1 T applied magnetic field, LBMO shows magnetoresistance (MR) of 10%, whereas for 4 and 7 T, the negative magnetoresistance values are in the range 51 and 59% respectively at TM-I. The experimental resistivity data of the present investigation are fitted to a simple empirical equation in order to understand conduction mechanism in this compound.  相似文献   

20.
Series of perovskite-type compounds La1−aCaaCr0.8Ti0.2O3−δ (a=0–1.0) were synthesized by the ceramic technique in air (final heating 1350 °C). The crystal structure of the compounds after cooling in air to room temperature was characterized as orthorhombic in space group Pbnm. Analysis of the lattice constants shows a noticeable decrease with increasing Ca content. All compounds prepared were stable in air and in a stream of Ar/1 Pa O2 at 20–1400 °C, as also in Ar/5% H2 (pH2O/pH2=0.01) at 850–1000 °C. Oxygen stoichiometry and electrical conductivity of the solid solutions with a=0.0–1.0 are investigated. Increasing Ca contents decrease the stability of the oxides in respect to the thermal dissociation of oxygen. All compounds are p-type semiconductors in the temperature range 20–1000 °C at oxygen partial pressures of 10−15 to 0.21×105 Pa. A maximum conductivity of about 30 S/cm in air at 1000 °C is observed for the composition with a=0.6 corresponding to a ratio of Cr3+/Cr4+=1 at an oxygen stoichiometry near 3.0, and oxidation states of La, Ca, Ti, and O ions of 3+, 2+, 4+, and 2−, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号