首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
提出了一种基于有限元及线性规划计算斜齿面齿轮齿面接触区域载荷分布及啮合刚度的方法。建立了斜齿面齿轮齿面的数学模型,基于matlab实现其齿面及接触轨迹的可视化;基于有限元思想,并结合线性规划改进的单纯形算法,得到齿面接触区域各点载荷分配;根据接触区域平均变形量和载荷计算了啮合齿对的啮合刚度;计算了接触区域最大压应力,并与Hertz理论的计算结果进行对比,验证该线性规划算法的有效性。  相似文献   

2.
提出了一种将有限元方法和接触理论相结合的内啮合齿轮副啮合刚度计算方法。该方法通过齿轮整体和局部有限元模型分离出啮合点宏观变形,利用线接触变形解析公式计算啮合点接触变形,求解非线性啮合平衡方程后得到齿轮副时变啮合刚度和载荷分布。该方法相比一般有限元法具有更高的计算效率和稳定性,同时克服了解析方法难以考虑斜齿轮和不同齿圈结构影响的缺点。最后,分析了内齿圈不同支撑数目和齿圈厚度对啮合刚度的影响。该方法可为内齿轮副强度及动态特性设计提供有效指导。  相似文献   

3.
斜齿轮存在移动载荷及空间结构复杂等因素,导致斜齿轮齿面剥落故障振动特征的提取非常困难。为了分析斜齿轮齿面剥落故障引起的振动响应特征,提出了基于切片法和势能法的斜齿轮齿面剥落故障啮合刚度的计算方法,考虑斜齿轮齿面剥落故障接触线长度的变化,分析了齿面剥落在长度和宽度两个方向扩展对时变啮合刚度的影响。同时,建立了6自由度斜齿轮系统动力学模型,获得了不同长度齿面剥落的动态响应特征及不同转速和负载对其的影响。研究结果表明,新的计算方法能够准确计算斜齿轮齿面剥落故障对啮合刚度、动态响应等特性的影响,可为齿轮系统状态监测提供依据。  相似文献   

4.
为提高内啮合斜齿轮有限元接触分析的建模速度和模型精度,提出了一种齿轮高精度三维有限元模型的自动建模方法。基于齿轮插刀齿廓方程,利用齿廓法线法,得到包括齿根过渡曲线的内、外斜齿轮端面齿廓,建立了内、外齿轮参数化粗网格有限元模型。开发了表层六面体网格剖分方法,自动识别齿面接触带单元,进行分级剖分细化,保证了有限元模型的建模精度和网格密度。进行了齿面接触分析,得到了内啮合斜齿轮的弯曲应力、接触应力、接触印痕、传动误差、时变啮合刚度和载荷分配率。粗细网格有限元模型计算结果对比分析表明,该方法提高了内啮合斜齿轮有限元建模效率和计算精度,缩短了计算时间,为快速准确的齿轮接触分析奠定了基础。  相似文献   

5.
斜齿圆柱齿轮传动的静态啮合刚度和动态啮合刚度   总被引:1,自引:0,他引:1  
本文根据齿轮啮合原理,推导出斜齿圆柱齿轮啮合瞬时接触线长度的计算方法。根据斜齿轮啮合的轮齿弯曲变形影响函数和接触变形影响函数[1]、[2]、[3],计算了斜齿圆柱齿轮的轮齿变形和单对齿刚度;并导出斜齿轮的静态啮合刚度和动态啮合刚度的计算式。最后通过实例计算分析了齿轮误差和参数对啮合刚度的影响。  相似文献   

6.
斜齿轮啮合过程中的理想齿面为渐开螺旋面,但在实际的服役过程中,由于齿轮受载、热变形以及支承变形等因素的影响,实际齿面与理想齿面存在一定的偏差,通常采用齿面修形的方法来减小由于位置偏差引起的齿面偏载及振动。现有的修形方式往往采用考虑载荷大小的公式法计算修形量,虽然能在一定程度上提高传动性能,但仍存在设计精度不高的问题。提出一种基于齿轮时变啮合过程的拓扑修形齿面设计方法,以此来提高齿轮副传动的啮合性能。首先,通过沿斜齿轮接触迹线划分齿面的方式对石川公式进行改进,建立斜齿轮副齿面时变刚度模型;然后,根据齿轮副的实际啮合过程建立6自由度动力学方程;最后,根据动力学方程计算的齿面综合变形量设计补偿齿面拓扑修形量,并进行了动力学仿真。通过与采用传统公式法设计的修形齿轮进行仿真对比,验证了提出方法的有效性。  相似文献   

7.
建立了斜齿圆柱齿轮承载接触分析模型,综合考虑齿距偏差、齿廓偏差和螺旋线偏差,提出了考虑轮齿误差时齿轮啮合刚度计算方法。分析了在不同精度等级和载荷作用时,斜齿轮啮合刚度和接触线总长度的变化规律。计算结果表明:啮合刚度曲线在一个啮合周期内的变化趋势和实际接触线总长度变化趋势基本一致。在同一精度等级下,随着载荷的增大,含误差的齿轮啮合刚度逐渐增大,并最终趋近于理想齿轮啮合刚度。而在相同载荷下,由于误差的存在,齿轮精度等级越高,其啮合刚度越大。  相似文献   

8.
基于齿条曲面多项式与齿轮公切共轭产形原理,建立了数值齿面、差齿面ease-off模型;通过ease-off曲面映射,解析了齿面接触路径、传动误差、接触线等轮齿啮合特性信息。利用势能法、变形协调方程与拟赫兹接触分析解决了齿面载荷计算、边缘接触应力求解问题,获得了轮齿啮合刚度、传动误差、齿间载荷分担、载荷分布、接触应力等齿面啮合的时变历程特性。计算结果与第三方软件的计算结果具有较好的一致性。  相似文献   

9.
根据刚度定义分析出变形量与刚度的线性关系,从啮合刚度的角度出发计算牵引齿轮的变形量,分别总结出以石川公式为基础的直齿轮啮合刚度求解方法以及以局部到整体或者傅里叶级数拟合为基础的斜齿轮啮合刚度求解方法。以SS8-Ⅱ型机车牵引齿轮为例通过分段法求解出时变啮合刚度、齿间载荷分配量以及最终所需的变形量,计算结果表明齿间载荷分配与已有根据经验公式及大量实验数据所得的曲线图大致一致,也表明这种方法对机车牵引齿轮的变形量的计算具有非常好的效果,为后续的牵引齿轮齿廓修形打下重要的基础,也对研究机车牵引齿轮传动平稳性具有重要的理论现实意义。  相似文献   

10.
根据Xu推导出的齿面滑动摩擦因数计算公式,利用斜齿轮副啮合接触分析的相关结果,对斜齿轮齿面滑动摩擦因数进行计算。首先,通过斜齿轮副轮齿接触分析和承载接触分析,得到齿面啮合点的法向载荷、传动误差、接触点位置和接触线长度。其次,将法向载荷带入赫兹公式得到最大接触应力。将传动误差带入齿面啮合点速度计算公式,最终得到齿面啮合点的滑动速度和卷吸速度。最后,将所有参数带入齿面滑动摩擦因数计算公式,得到一对斜齿轮轮齿从进入啮合到退出啮合齿面接触点的滑动摩擦因数。以一对斜齿轮传动为例,利用上述方法计算得到齿面接触点的滑动摩擦因数,与Xu得出的结论进行对照,结果合理。  相似文献   

11.
圆柱齿轮齿面接触线载荷分布的研究   总被引:2,自引:1,他引:2  
李剑锋  张准 《机械传动》1994,18(2):18-22
通过分析轮齿刚度和齿面接触线载荷分布的新方法──齿面接触线法向刚阵法,建立了齿面接触线上节点力与法向变形的关系。加入相应的变形协调条件和静力平衡条件,对多对齿同时啮合状态下载荷沿击面接触线分布、齿间载荷分配及轮齿瞬时啮合刚度(另文发表)作了分析计算。并用有限元法编制了计算载荷分布的专用软件,给出了分析计算实例,绘制出考虑多齿对啮合,刚度差异以及边界效应时,载荷沿齿面接触线的分布曲线。  相似文献   

12.
齿轮综合啮合误差计算方法及对系统振动的影响   总被引:8,自引:0,他引:8  
通过将轮齿变形分为线性宏观变形和非线性局部接触变形两部分,建立齿轮承载接触分析修正模型,并利用两层迭代将非线性接触问题转化为多个线性代数方程组进行求解。根据各接触点变形关系,提出已知齿面误差分布时啮合刚度和综合啮合误差的确定方法。通过引入刚度激振力将参变的运动微分方程组化为定常微分方程组,并利用傅里叶级数法求解其稳态解。以一对斜齿轮副为例,分析了齿轮误差在不同扭矩和转速下对系统振动的影响规律。研究发现,由于轮齿误差的存在,齿轮副啮合刚度在轻载时会减小,从而导致系统共振转速降低;受重合度和轮齿变形的影响,综合啮合误差的幅值远小于齿面原始制造误差幅值。此方法可用于分析不同误差类型及分布形式对系统振动的影响规律,为进一步建立齿轮误差控制原则提供了有效手段。  相似文献   

13.
根据行星齿轮功率分流传动的特点,提出多个齿轮接触的齿面加载接触分析方法。考虑了安装误差条件下的齿面准确几何形态,提出行星齿轮齿面几何接触分析(TCA)方法并获得外(内)各齿轮副的相对齿面间隙;通过一次有限元柔度系数计算获得各齿轮的柔度系数,各外(内)齿轮辐接触点的法向柔度系数通过分别插值太阳轮和行星轮(行星轮和齿圈)齿面网格节点的柔度系数并叠加获得;结合齿轮的几何分析与力学分析,将多个齿轮副受力接触转化为求解齿面有限个离散接触点的力学平衡问题,通过数学规划的方法求解非线性方程组得到加载后各齿轮副的齿面变形、啮合刚度、载荷分布、行星轮均载系数。多载荷传动误差和载荷分配进一步反映了行星传动啮合性能,为高性能行星传动齿面的修形设计、动力学分析奠定了理论基础。  相似文献   

14.
渐开线斜齿圆柱齿轮齿面接触强度分析   总被引:1,自引:0,他引:1  
斜齿圆柱齿轮在啮合过程中,其啮合接触线的总长度不是定值,而该值将影响啮合过程中轮齿间的线载荷,因此分析了斜齿轮对在一个啮合周期内的接触线总长度的变化规律。目前将斜齿轮转化为当量直齿轮计算齿轮齿面接触强度,无法反映啮合瞬时齿面接触应力分布情况。将啮合接触线两侧的斜齿轮轮齿对看做曲率半径不断变化的圆锥台体,并结合斜齿轮啮合原理、赫兹弹性接触理论,通过解析法计算轮齿对任意啮合时刻的齿面接触强度,并分析了轮齿对一个啮合周期内齿面接触强度的变化规律。通过有限元分析软件,对解析法的计算结果进行了验证。  相似文献   

15.
不考虑润滑剂影响,针对理想渐开线直齿圆柱齿轮,研究存在齿面磨损时齿轮啮合刚度的计算方法。基于齿轮共轭啮合原理计算滚齿加工条件下的齿廓曲线。根据Timoshinko梁理论,考虑轮齿弯曲变形、剪切变形、压缩变形、齿轮基体变形和赫兹接触变形,计算齿轮啮合刚度。针对运行过程中的齿面磨损,提出轮齿等弧长离散方法,分析齿面磨损对离散微元短梁的截面面积、截面面积矩和实际接触齿宽的影响,计算分析存在均匀磨损、微点蚀和宏观点蚀等齿面磨损时的齿轮啮合刚度。结果表明,100μm深的均匀磨损导致的啮合刚度变化不到2‰;齿面产生15%的微点蚀时,啮合刚度变化在10%以内,啮合刚度对早期齿面磨损不敏感。本研究为计及齿面磨损的齿轮动力学建模提供了一条技术路径。  相似文献   

16.
疲劳点蚀斜齿轮啮合刚度计算是齿轮故障动力学分析的重要基础.基于有限元的斜齿轮啮合刚度计算方法,建立了正常齿轮和疲劳点蚀齿轮的有限元模型.通过有限元模型计算,得到了齿面法向接触力和综合弹性变形量;并根据啮合刚度计算方法,得到了齿轮的单齿啮合刚度和多齿综合啮合刚度.分析不同点蚀剥落长度和宽度对齿轮啮合刚度的影响得知,剥落长度和宽度对齿轮啮合刚度影响较大;而且剥落长度会影响齿轮啮合刚度的变化区域.通过疲劳点蚀试验证明,齿轮啮合刚度的减小使得齿轮振动冲击响应增大.  相似文献   

17.
为了分析基于齿背接触刚度的高速斜齿轮瞬态振动放大特性,针对高转速瞬态工况下斜齿轮齿面啮合-脱啮-齿背接触的齿面实际承载接触状态,建立了同时考虑啮合时间与齿面振动位移耦合机理的斜齿轮动态啮合刚度。在细化考虑齿背啮合机理、基于齿背实际啮合刚度的模型基础上,进一步建立斜齿轮啮合型瞬态振动模型,并在此基础上展开不同齿侧间隙以及齿背接触对系统瞬态振动特性影响分析研究。搭建封闭功率流式斜齿轮瞬态扭转振动测试试验台,对基于齿背接触刚度的斜齿轮瞬态振动特性进行了验证。该研究具有较好的理论研究意义,有利于斜齿轮传动系统在航空传动、新能源传动系统上的应用推广,进一步提升高转速齿轮系统的瞬态振动噪声品质。  相似文献   

18.
将大齿宽齿轮沿齿宽方向进行切片并构建一系列非线性接触单元,根据各接触单元在转子上的位置将其与Timoshenko梁单元相耦合,建立了一种齿轮耦合转子系统多点啮合准静态接触分析模型,并首次提出了齿轮副广义传递误差的概念。通过求解静力学平衡方程组,得到齿轮副啮合错位量分布和齿面载荷分布。将齿轮副动态啮合激励引入系统动力学模型,求解考虑转子系统变形的齿轮系统动态响应。通过与有限元计算结果对比,验证了准静态接触模型的有效性。分析了支承布局形式、功率传递路径和负载扭矩对系统准静态及动态特性的影响。研究表明:不同支承布局形式下齿面接触状态和系统动态特性差异明显。不同功率传递路径下系统准静态和动态特性非常接近。不同负载扭矩下齿面接触状态非常接近,然而,随着负载扭矩的增加,啮合错位量逐渐增大,系统振动逐渐增强。  相似文献   

19.
齿轮啮合传动的内部激励是引起齿轮振动和噪声的关键因素,以某8挡自动变速器中一对常啮合斜齿轮为研究对象,对其啮合传动过程的内部激励开展全面深入研究,包括齿面接触状态、时变啮合刚度、误差激励和啮合冲击。采用有限元法分析斜齿轮的静态和动态接触过程,得到齿面接触应力的大小及分布;采用接触线长度变化表示时变啮合刚度的理论方法和采用有限元仿真的方法得到斜齿轮传动的时变啮合刚度曲线;采用理论计算和有限元法分析斜齿轮误差激励,包含啮合误差、静态传递误差和动态传递误差;采用有限元法分析啮合冲击,得到齿轮传动过程的齿根应力;采用有限元法计算齿面接触线上应力分布。研究为斜齿轮传动状态的改善提供了基础。  相似文献   

20.
根据[1]所提出的计算方法,本文计算了一对斜齿圆柱齿轮轮齿啮合过程的载荷分布和啮合刚度。与[1]的计算结果对比发现,斜齿圆柱齿轮轮缘与轮辐对斜齿轮在啮合过程中的载荷分布和啮合刚度波动影响很大。因此,在计算斜齿圆柱齿轮的变形时,应选择合理的计算模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号