首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
The effects of the rare earth element Y addition on mechanical properties and energy absorption of a low Zn content Mg–Zn–Zr system alloy and the deformation temperature of optimized alloy were investigated by room tensile test, optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscope(TEM). The results show that,after homogenization at 420 °C for 12 h for the as-cast alloys, Mg Zn phase forms, which decreases the strength of Mg–2.0Zn–0.3Zr alloy with Y content of 0.9 wt%. The tensile strength and elongation of the alloy with a Y addition of 5.8 wt% reach the max value(281 ± 2) MPa and(30.1 ± 0.7) %, respectively; the strength and elongation of Mg–2.0Zn–0.3Zr–0.9Y alloy at the optimized extrusion temperature of 330 °C reach(321 ± 1) MPa and(21.9 ± 0.7) %, respectively. The energy absorption increases with the increase of Y content, the max value reached 0.79 MJ m-3with Y content of 5.8 wt%, and the energy absorption of Mg–2.0Zn–0.3Zr–0.9Y alloy at the optimized extrusion temperature of 330 °C reaches0.75 MJ m-3.  相似文献   

2.
The influence of long-term solution treatment for various intervals on the microstructure,mechanical properties,and corrosion resistance of the as-cast Mg–5Zn–1.5Y alloy was investigated.Variation of secondary phases was studied during solution treatment through thermal analysis test and thermodynamic calculations.Tensile and hardness tests,as well as polarization and immersion tests,were performed to evaluate the mechanical properties and corrosion behavior of the ascast and heat-treated alloy,respectively.Results show that solution treatment transforms I-phaseinto W-phaseas well as dissolves it into the a-Mg matrix to some extent;therefore,the amount of W-phase increases.Moreover,prolonged solution treatment decreases the volume fraction of the phases.In the first stage of solution treatment for 14 h,the tensile properties significantly increase due to the incomplete phase transformation.Although long-term solution treatment sharply decreases the tensile and hardness properties of the alloy,it improves the corrosion resistance due to the transformation of I-phase into W-phase.In fact,it decreases corrosion potential and simultaneously dissolves intermetallic compounds into the a-Mg matrix,resulting in the reduction in galvanic microcells between the matrix and compounds.It is found that the optimum time for long-term solution treatment is 14 h,which improves both corrosion behavior and mechanical properties.  相似文献   

3.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

4.
The effects of Zn content on the as-cast microstructure and mechanical properties of Mg-xZn-4Al alloys containing TiC and rare earth elements were investigated by optical microscopy(OM), scanning electron microscopy(SEM) analysis, X-ray diffraction (XRD) analysis and tensile test. The results show that Zn content which increased from 8% to 12% does not obviously influence on the alloy phase type of the Mg-xZn-4Al experimental alloys containing 0.25%RE and 1%TiC, but with Zn content increasing from 8% to 12%, the amount of Mg32(Al,Zn)49 phase in the as-cast microstructure of the experimental alloys increases and its distribution becomes more continuous. In addition, the Mg-10Zn-4Al alloy containing 0.25%RE and 1TiC has the highest ultimate tensile strength at room temperature and 150 ℃ and highest yield strength and elongation at 150 ℃ Furthermore, with Zn content increasing from 8% to 12%, the yield strength and elongation of Mg-xZn-4Al experimental alloys containing 0.25%RE and 1%TiC increase and decrease at room temperature, respectively.  相似文献   

5.
The effect of deformation behavior on the in vitro corrosion rate of Mg–2Zn–0.5 Nd alloy was investigated experimentally after uniaxial tensile and compressive stress. The microstructure and texture were characterized using electron backscattered diffraction and X-ray diffraction, while potentiodynamic polarization and immersion tests were used to investigate the corrosion response after deformation. The result reveals that applied compressive stress has more dominant effect on the corrosion rate of Mg–2 Zn–0.5 Nd alloy as compared to tensile stress. Both tensile and compressive strains introduce dislocation slip and deformation twins in the alloy, thereby accelerating the corrosion rate due to the increased stress corrosion related to dislocation slips and deformation twins. The {10ī2} tension twinning and prismatic slip were the major contributors to tensile deformation while basal slip, and {10ī2} tension twin were obtainable during compressive deformation. The twinning activity after deformation increases with the plastic strain and this correlates with the degradation rate.  相似文献   

6.
By means of optical microscope(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM)and transmission electron microscopy(TEM) analyses, the microstructures of as-cast and heat-treated Mg–4Zn–1Y(wt%) alloy containing quasi-crystal phase were studied.The microstructure of the as-cast alloy consists of a-Mg solid solution grains, intermetallic particles and eutectic phases(W-phase and I-phase), and huge grains with serious dendritic segregation are clearly observed. After heat treatment, phase transformation and dissolution occur in the alloy and many phases remain. When the alloy was treated above 410 °C, the eutectic phases transform into spherical shape as the I-phase turns to W-phase. After heat treatment for long time, the alloy is over burnt and the W-phase decomposes to Mg–Y binary phase.  相似文献   

7.
The hot deformation behavior of homogenized Mg–6.5Gd–1.3Nd–0.7Y–0.3Zn alloy was investigated during compression at temperatures of 250–400 ℃ and at strain rates ranging from 0.001 to 0.100 s~(-1). Microstructure analyses show that the flow behaviors are associated with the deformation mechanisms. At the lower temperatures(250–300 ℃), deformation twinning is triggered due to the difficult activation of dislocation cross-slip. Dynamic recrystallization(DRX) accompanied by dynamic precipitation occurs at the temperature of 350 ℃ and influences the softening behavior of the flow.DRX that develops extensively at original grain boundaries is the main softening mechanism at the high temperature of 400 ℃ and eventually brings a more homogeneous microstructure than that in other deformation conditions. The volume fraction of the DRXed grains increases with temperature increasing and decreases with strain rate increasing.  相似文献   

8.
The Mg–12Gd–1Er–1Zn–0.9 Zr(wt%) alloy with ultra-high strength and ductility was developed via hot extrusion combined with pre-deformation and two-stage aging treatment.The age-hardening behavior and microstructure evolution were investigated.Pre-deformation introduced a large number of dislocations,resulting in strain hardening and higher precipitation strengthening in the subsequent two-stage aging.As a result,the alloy showed a superior strength–ductility balance with a yield strength of 506 MPa,an ultimate tensile strength of 549 MPa and an elongation of 8.2% at room temperature.The finer and denser β' precipitates significantly enhanced the strength,and the bimodal structure,small β-Mg_5RE phase as well as dense γ' precipitates ensured the good ductility of the alloy.It is suggested that the combination of pre-deformation and two-stage aging treatment is an eff ective method to further improve the mechanical properties of wrought Mg alloys.  相似文献   

9.
We presented the solution of deformation-induced precipitation after homogenization to enhance the mechanical properties of Mg–6 Zn alloys. The results show that the improved strategy exhibits more effective strengthening role than grain refinement methods based on low-temperature severe plastic deformation under the same strain. The low-temperature deformation with larger extrusion ratio results in massive nano-sized precipitates and excellent mechanical properties with the yield strength of 355 MPa and the ultimate tensile strength of 405 MPa. The increased mechanical properties are strong and tough enough to resist the stress and not be worn away when the alloy nail penetrates through the pig thigh bone, potentially extending more orthopedic surgery applications for Mg–Zn alloys.  相似文献   

10.
This study investigates the eff ect of solution treatment(at 470 °C for 0–48 h) on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%) alloy prepared by permanent gravity casting.The results show that the as-cast microstructure consists of α-Al dendrites and a network-like pattern of T-Mg_(32)(AlZnCu) 49 phases.Most of the T-phases were dissolved within 24 h at 470 ℃;and a further prolonging of solution time resulted in a rapid growth of α-Al grains.No transformation from the T-phase to the S-Al_2CuMg phase was discovered in this alloy.Both the tensile properties and impact toughness increased quickly,reached a maximum peak value,and decreased gradually as the solution treatment proceeded.The impact toughness is more closely related to the elongation,and the relationship between impact toughness and elongation appears to obey an equation:IT = 8.43 EL-3.46.After optimal solution treatment at 470 ℃ for 24 h,this alloy exhibits excellent mechanical properties with the ultimate tensile strength,yield strength,elongation and impact toughness being 431.6 MPa,270.1 MPa,19.4% and 154.7 kJ/m~2,which are comparable to that of a wrought Al–6.0 Mg–0.7 Mn alloy(5E06,a 5 xxx aluminum alloy).Due to its excellent comprehensive combination of mechanical properties,this cast alloy has high potential for use in components which require medium strength,high ductility and high toughness.  相似文献   

11.
热处理对Mg-5Zn-0.63Er合金显微组织及力学性能的影响   总被引:1,自引:0,他引:1  
通过不同的热处理工艺研究含有准晶Ⅰ相的铸态Mg-5Zn-0.63Er(质量分数,%)合金的显微组织演变.结果表明:合金在480℃固溶10 h后,除有W相颗粒析出外,准晶Ⅰ相几乎全部固溶在基体中.固溶态Mg-5Zn-0.63Er合金在175℃下时效6~10h.合金在峰时效态的抗拉强度约为261MPa、伸长率为10.5%.合金拉伸强度的提高归因于杆状MgZn2相的析出.  相似文献   

12.
Wang  Jing  Fang  Xiao-gang  Wu  Shu-sen    Shu-lin 《中国铸造》2017,14(3):199-204
To investigate the effects of solution temperature and the decomposition of I-phase on the microstructure, phase composition and mechanical properties of as-cast Mg-6Zn-1.4Y-0.6Zr alloy, solution treatment at 440 oC, 460 oC and 480 oC and further aging treatment were conducted on the alloy. The results indicate that the net-like intermetallic compounds(mainly I-phase) dissolve into the α-Mg matrix gradually with the increase of solution temperature from 440 oC to 480 oC. Besides, the I-phase decomposes completely at 480 oC, with the formation of fine W-phase(thermal stable phase) and Mg_7Zn_3 phase. In addition, a great number of fine and dispersive Mg-Zn binary phases precipitate in the α-Mg matrix during the aging treatment. Due to the increase of solute atoms and the precipitation of strengthening phases, such as W-phase and Mg-Zn phases, the optimal strength is obtained after solution treatment at 460 oC for 8 h and aged at 200 oC for 16 h. The yield strength(YS), ultimate tensile strength(UTS) and elongation are 208 MPa, 257 MPa and 3.8%, respectively. Compared with the as-cast alloy, the increments of YS and UTS are 117% and 58%, respectively, while the decrement of elongation is 46%.  相似文献   

13.
Influences of the tempering temperature on the microstructure,mechanical property and wear resistance of High-Boron High Speed Steel (HBHSS) roll materials were investigated by means of optical microsc...  相似文献   

14.
采用XRD和SEM等微观表征技术研究不同Zn添加量对Mg-2Er合金微观组织和力学性能的影响。结果表明:当Zn添加量为1%和2%时,合金主要相组成为W相和α-Mg;当Zn添加量为4%-10%时,合金中则有I相析出,合金相成分变为W相、I相和α-Mg;当Zn添加量增加至12%时,W相消失,合金中主要第二相则为I相和Mg4Zn7相。当Zn添加量为6%时,合金具有较好的拉伸力学性能,其抗拉强度、屈服强度和伸长率分别为224 MPa、134 MPa和10.4%。  相似文献   

15.
We have studied the effect of nitrogen on the cold forging properties of a low carbon steel as a function of temperature. Five AISI 1020 steels with nitrogen contents from 12 to 180 ppm were examined by tensile testing from 25 to 371 °C. Yield strength, tensile elongation (ductility), ultimate tensile strength (UTS), strain hardening exponents and strength coefficients were determined. The influence of nitrogen on the mechanical property behavior of this low carbon steel exhibits trends as expected—when nitrogen content increases, the strength of the steel increases and the ductility decreases. Likewise, as the temperature increases, the strength of the steel generally decreases; however, the ductility initially decreases, then exhibits an increasing trend. Additionally, there is an intermediate temperature range for these alloys where anomalous behavior is observed. Serrated stress–strain curves seen in this temperature range are indicative of dynamic strain aging. It is probable that this anomalous mechanical property trend is due to dynamic strain aging.  相似文献   

16.
The effects of yttrium addition on microstructure and mechanical properties of as-cast Mg-6Zn-3Cu-0.6Zr-xY(x=0,0.5, 1.0,1.5 and 2.0,mass fraction,%)(ZCK630+xY for short in this study)alloys were investigated by means of OM,XRD and SEM. The results show that the average grain size of Mg-Zn-Cu-Zr magnesium alloy is effectively reduced(from 57μm to 39μm)by Y addition.The analysis of XRD indicates the existence of I-phase(Mg3Zn6Y)and W-phase(Mg3Zn3Y2)in ZCK630 alloys with Y addition.The ultimate tensile strength of ZCK630 alloys is significantly deteriorated with increasing Y addition,which is possibly related to the continuous networks of intergranular phases and the increase of W-phase.  相似文献   

17.
采用力学性能测试和显微组织观察等方法,研究了Zn含量、退火温度和冷却速率对7075-O态铝合金组织与性能的影响。研究结果表明:随退火温度的升高,7075-O态铝合金板材的强度逐渐减小,伸长率先增大后减小;随冷却速率和Zn元素含量的增加,7075-O态铝合金板材强度逐渐增大,伸长率逐渐减小。为满足冲制用7075-O态铝合金薄板的性能要求,应选择Zn含量≤5.6%,最佳退火工艺为410 ℃×3 h炉冷至100 ℃出炉空冷。  相似文献   

18.
通过在25Cr-20Ni耐热钢基体成分中加入质量分数为2.5%Al的方式制备25Cr-20Ni-2.5Al耐热钢,分别采用拉伸和高温压缩试验对其力学性能进行表征分析,研究结果表明:经过36 h时效处理的试样抗拉强度得到明显提升,此时抗拉强度和伸长率分别为803 MPa和27.1%。经过36 h时效处理会减小拉伸断口的韧性,生成部分脆性断裂的痕迹。随时效温度的增加,耐热钢的抗拉强度先增大后减小,伸长率先减小后增大,转折点均出现在时效温度650 ℃,此时抗拉强度和伸长率分别为451 MPa和10.26%。当变形程度增大后,晶粒将达到更大的变形程度,而耐热钢经过热压缩处理后并不会引起晶粒尺寸的明显改变;晶界部位存在析出相,而且当变形量增大后析出相的数量也会略微增加。  相似文献   

19.
采用挤压铸造法制备了Mg93YZn6合金,并对其进行高温热处理,分析了铸态和热处理态的Mg93YZn6合金的微观组织、显微硬度和力学性能。结果表明,该合金的挤压铸造和热处理后的组织中均只有α-Mg基体相和准晶I相生成。经500℃×4h热处理后,合金中的准晶相含量与铸态合金中变化不大。经550℃×2h热处理后,合金中的准晶相有所减少。与铸态合金相比,热处理后合金的硬度、抗拉强度和伸长率均提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号