首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
本文以新戊二醇、三氯氧磷和1,1,1-三(4-羟基苯基)乙烷(THPE)为原料合成了一种环状磷酸酯阻燃剂DOPC-THPE,采用红外光谱、核磁氢谱、核磁碳谱、核磁磷谱表征了其化学结构。将该阻燃剂添加到聚丙烯(PP)中,通过极限氧指数(LOI)、垂直燃烧(UL-94)实验研究了材料的阻燃性能,同时利用热重分析(TGA)表征了阻燃剂和材料的热稳定性。结果表明DOPC-THPE具有较好的热稳定性和成炭性,700 ℃残炭量达35.9%,30%添加量可使PP的LOI值从17.5%提高到25.0%,通过垂直燃烧V-1级。  相似文献   

2.
三聚氰酸螺环磷酸酯阻燃聚丙烯的性能研究   总被引:1,自引:0,他引:1  
采用自制的三聚氰酸螺环磷酸酯(SPCA)对聚丙烯(PP)进行阻燃处理,研究了SPCA对PP的燃烧性能和力学性能的影响。结果表明:SPCA添加量为25 %时,阻燃效率最高,此时PP的氧指数值达到25.6 %。SPCA的加入对PP的力学性能影响不大,当SPCA用量为25 %时,PP的拉伸强度为27.62 MPa,比纯PP下降了10.32 %,弯曲强度和冲击强度分别为38.03 MPa和3.68 kJ/m2,比纯PP分别提高了8.13 %和29.57 %。热分析结果表明,阻燃剂SPCA的加入明显提高了PP的高温热稳定性。  相似文献   

3.
一种环状膦酸酯对ABS阻燃及热稳定性的影响   总被引:1,自引:0,他引:1  
以白行合成的环状膦酸酯(DMDP)为阻燃剂,研究了DMDP阻燃ABS树脂的阻燃性能和热性能。实验结果表明,DMDP的加入可以提高ABS树脂的极限氧指数(LOI);热重分析表明无论是空气还是氮气氛围,DMDP于ABS树脂前分解,有利于促进ABS树脂成炭,提高高温残余量。  相似文献   

4.
对三(2,2-二溴甲基-3-溴丙基)磷酸酯(TPB-3070)的热性能及其阻燃聚丙烯进行了研究。热性能研究结果表明,TPB-3070的热稳定性能优于传统的HBCD和TBC,起始分解温度分别高60℃和80℃。对其用于聚丙烯的阻燃研究中发现,在用量较低的情形下TPB-3070与Sb2O3有良好的协同效应,随着用量的增加这种协同效应逐渐减弱。研究结果表明TPB-3070具有优异的热稳定性和对聚丙烯优良的阻燃和加工性能。  相似文献   

5.
周靖恒  林建  杨宕莎  岳振青  朱妍妍  王新龙 《精细化工》2023,(7):1570-1575+1617
使用溶剂热法将HKUST-1[Cu3(BTC)2,BTC为均苯三甲酸根离子]负载到聚磷酸铵(APP)表面制得了HKUST-1@APP,然后将HKUST-1@APP与环氧树脂(EP)混合后固化制备了HKUST-1@APP/EP阻燃复合材料。采用SEM、EDS、XRD、FTIR对HKUST-1@APP进行了表征,通过垂直燃烧测定仪、氧指数测定仪、TGA、电子拉力机对HKUST-1@APP/EP复合材料进行了性能测试。结果表明,当HKUST-1@APP的添加量为总体系质量的5%时,制得的HKUST-1@APP/EP复合材料的极限氧指数为27.5%,垂直燃烧测试(UL-94)通过V-1级,样品残炭的AD/AG(拉曼光谱中无定形碳的碳原子与晶体碳中sp2杂化的碳原子振动分别形成的D峰与G峰的峰面积比)降至0.043,而添加总体系质量5%APP的EP复合材料的AD/AG为0.3161,说明HKUST-1@APP还可以改善EP燃烧过程中产生的炭层,...  相似文献   

6.
张立强  张猛  周永红 《塑料工业》2013,(12):103-107
采用微波辅助法,以苯胺、苯甲醛、亚磷酸二乙酯为原料,在80℃、功率为300 W的条件下反应2 min,生成α-氨基磷酸酯,并将其作为阻燃剂应用在聚氨酯阻燃泡沫材料中。通过傅里叶红外光谱(FTIR)、核磁共振谱(1H-NMR、31P-NMR)、质谱(MS)对α-氨基磷酸酯的结构进行了表征,通过热失重分析、极限氧指数、万能试验机和扫描电子显微镜对聚氨酯泡沫的热稳定性、阻燃性、机械性能及聚氨酯泡沫孔的形态进行表征。结果表明,与传统的反应方法相比,微波辅助法大大提高了反应的产率,产率高达98%;而且α-氨基磷酸酯能够提高聚氨酯泡沫的热稳定性、阻燃性、压缩强度和聚氨酯泡沫孔的规则性。  相似文献   

7.
王彦林 《精细化工》2014,31(11):1390-1393,1397
1-氧基磷杂-4-羟甲基-2,6,7-三氧杂双环[2.2.2]辛烷(PEPA)与二甲基二氯硅烷反应合成阻燃成炭剂——二甲基硅氧基双笼环磷酸酯,即二甲基硅酸二{1-氧基磷杂-2,6,7-三氧杂双环[2.2.2]辛烷-(4)-甲}酯(DSDE)。考察了不同溶剂、反应温度和反应物配比对产物产率的影响,得到了最佳的反应条件是PEPA与二甲基二氯硅烷的摩尔比为2.16∶1,产率达92.6%。通过FTIR、1HNMR、元素分析、差热分析及极限氧指数表征了产物的结构及性能。研究表明,目标产物有较好的阻燃成炭性和热稳定性。  相似文献   

8.
以新戊二醇、三氯氧磷、乙醇为原料合成一种阻燃剂磷酸乙基新戊二醇酯(化合物Ⅱ),采用傅里叶变换红外光谱(IR)、核磁共振波谱(1HNMR、13CNMR及31PNMR)、液相色谱-质谱(ESI-MS)表征其化学结构。考察了物质的量比〔n(新戊二醇磷酰氯):n(乙醇)〕、反应温度和反应时间等因素对反应的影响,得到最佳反应条件为:n(新戊二醇磷酰氯) : n(乙醇)= 1.0 : 5.0,反应温度为50℃,反应时间为8 h,产率达80.8%。将合成的阻燃剂磷酸乙基新戊二醇酯添加到硬质聚氨酯泡沫(RPUF)中,通过极限氧指数(LOI)、垂直燃烧(UL-94)实验测定RPUF的阻燃性能,以及利用热重分析(TGA)表征阻燃剂和RPUF的热稳定性。结果表明,磷酸乙基新戊二醇酯的添加,在一定程度上降低了RPUF的热稳定性,但是RPUF的阻燃性能有所提高。添加量为30%(质量分数,以材料总质量计)时可使RPUF的LOI值从17.1提高到22.5%,通过垂直燃烧V-2级,以及在800℃时,残余残炭量由15.8%增加到18.9%。  相似文献   

9.
赵新叶  徐洋  王俊龙  张孟宇  职慧珍  杨锦飞 《精细化工》2019,36(8):1684-1688,1714
以新戊二醇、三氯氧磷、乙醇为原料,合成了一种阻燃剂磷酸乙基新戊二醇酯(Ⅱ),采用FTIR、~1HNMR、~(13)CNMR、~(31)PNMR、ESI-MS表征了其化学结构。考察了物质的量比〔n(新戊二醇磷酰氯)∶n(乙醇)〕、反应温度和反应时间等因素对反应的影响,得到最佳反应条件为∶n(新戊二醇磷酰氯)∶n(乙醇)=1∶5,反应温度50℃,反应时间8 h,产率达80.8%。将合成的阻燃剂磷酸乙基新戊二醇酯添加到硬质聚氨酯泡沫(RPUF)中,通过极限氧指数(LOI)、垂直燃烧(UL-94)实验测定了RPUF的阻燃性能,以及利用TGA表征了阻燃剂和RPUF的热稳定性。结果表明:磷酸乙基新戊二醇酯的添加,在一定程度上降低了RPUF的热稳定性,但是RPUF的阻燃性能有所提高。添加量为30%(质量分数,以材料总质量计)时可使RPUF的LOI值从17.1%提高到22.5%,通过垂直燃烧V-2级,以及在800℃时,残炭量由15.8%增加到18.9%。  相似文献   

10.
氢氧化物对NER/OMMT与磷酸酯体系阻燃聚丙烯的影响   总被引:2,自引:1,他引:1  
将氢氧化物加入到酚醛环氧树脂/有机蒙脱土(NER/OMMT)与磷酸酯阻燃聚丙烯(PP)体系,考察了氢氧化物和磷酸酯的种类和用量等对PP燃烧性能和力学性能的影响。在NER/OMMT与磷酸三苯酯(TPP)总用量仅为10wt%的情况下制得了氧指数高达30.0%的阻燃聚丙烯,并且热释放速率峰值比纯PP下降了49%,在降低了材料的毒害性的同时提高了其性能,为通用塑料工程化探索了一条行之有效的途径。  相似文献   

11.
氯溴代烷基磷酸酯阻燃剂的合成与阻燃性研究   总被引:1,自引:0,他引:1  
本文对新戊二醇、溴素、三氯氧磷和环氧乙烷等为原料合成了氯溴代烷基磷酸酯阻燃剂-3-溴-2,2-二甲基丙基-2-溴乙基-2-氯乙基磷酸酯(CBAP-912),探索了温度、时间、原料配比,催化剂用量等反应条件对产率的影响。用化学方法,FTIR、TG等方法对该合成产物的性能和结构进行了表征。并研究了该阻燃剂在不饱和聚酯树脂和聚氯乙烯中的阻燃性,结果表明其上有良好的阻燃性能。  相似文献   

12.
以三聚氰胺和磷酸为主要原料,以去离子水为溶剂合成了三聚氰胺磷酸盐(MP);运用正交试验法设计试验方案,考察了反应物的配比、反应温度和反应时间对反应产率的影响;用傅立叶变换红外光谱(FTIR)仪进行了结构表征,使用极限氧指数仪和垂直燃烧仪测试了其对热塑性聚氨酯(PUR-T)弹性体的阻燃性能.研究结果表明,由FTIR谱图分析产物中含有C=N,P=O,C-N,N-H,P-OH等基团,确定了产物是MP;在合成反应中接近最佳反应的条件是:三聚氰胺与磷酸的物质的量之比为1:1、合成反应温度为95℃,合成反应时间为1.5 h,在此条件下合成MP的产率为95.17%;当将产物添加到PUR-T中MP与PUR-T质量比达到28:100时,燃烧级别达到UL94 V-0级,点燃时间长,自熄时间短,成炭效果好,且阻燃效果优于聚磷酸铵阻燃剂.  相似文献   

13.
以9,10-二氢-9-氧杂-10-膦酰杂菲-10-氧化物(DOPO)、甲醛和二乙醇胺为原料,强酸性阳离子交换树脂作催化剂,分两步合成了新型反应型阻燃剂9,10-二氢-9氧杂-10-\[N,N-二(羟乙基)氨甲基\]-10-膦杂菲-10-氧化物(DAM-DOPO),并制备了DAM-DOPO阻燃剂阻燃聚氨酯泡沫(PUF),采用红外光谱、核磁共振等分析手段对DAM-DOPO进行了表征,同时通过极限氧指数值测定、水平燃烧试验和CAL 117D实验评估了阻燃PUF的阻燃性能。结果表明,合成的DAM-DOPO阻燃剂熔点为165~167 ℃;添加12 份(质量份,下同)DAM-DOPO阻燃的PUF的极限氧指数为26.5 %,阻燃性能通过GB 8410—2006标准和CAL TB 117D实验。  相似文献   

14.
笼状磷酸酯三聚氰铵盐阻燃剂的合成及阻燃性能研究   总被引:6,自引:0,他引:6  
以磷酸、季戊四醇、三聚氰胺为原料合成了笼状磷酸酯三聚氰铵盐阻燃剂,根据该阻燃剂的膨胀率及剩碳率,确定了最优合成条件为:原料配比(磷酸:季戊四醇:三聚氰铵为3:1:1),中间产品I的合成温度120~130℃,合成时间为90~120min,固化温度190~2l0℃,固化时间110~130min。将该阻燃剂应用于聚乙烯,取得了良好的阻燃效果。  相似文献   

15.
通过用新戊二醇磷酰氯对线型酚醛树脂(PF)酚羟基实行磷酰化封端处理,制备了线型PF基新戊二醇磷酸酯(NDMPP)阻燃剂,将其应用于阻燃PA6。采用核磁共振氢谱(1H NMR)、核磁共振磷谱(31P NMR)和傅立叶变换红外光谱(FTIR)表征了NDMPP的结构,采用热重(TG)分析研究其热分解行为,采用极限氧指数(LOI)和UL 94测试其阻燃PA6材料的阻燃性能,采用万能材料试验机和冲击试验机测试阻燃材料的力学性能。1H NMR,31P NMR和FTIR结果表明,线型PF中大约82%的羟基被磷酰化,NDMPP中的磷含量约为11.9%。TG分析结果表明,NDMPP阻燃剂在氮气气氛下起始分解温度超过250℃,600℃的残炭率达到43.5%,显示出良好的热稳定性。当NDMPP质量分数为25%时,其阻燃的PA6达到UL 94 V–0等级,LOI达到33.4%,而拉伸强度、缺口冲击强度、弯曲强度和弯曲弹性模量分别为纯PA6的76%,41%,72%和71%。  相似文献   

16.
研究了氢氧化镁、氢氧化铝或二氧化硅包覆笼状磷酸酯微胶囊以及上述3种无机阻燃剂和笼状磷酸酯复配共混用于阻燃环氧树脂的性能。采用极限氧指数,垂直燃烧(UL94)以及热分析(TG/DTG)对比了各阻燃体系的阻燃协效性能和热行为。结果表明,3种无机物在复配共混体系中都和笼状磷酸酯有较好的协同阻燃作用,而在包覆体系中阻燃性能都较差。添加量都为20 %(17 %笼状磷酸酯和3 %无机阻燃剂),复配共混体系阻燃环氧树脂的极限氧指数可达32 %,且都可以达到UL94 V0级;而相应包覆微胶囊体系阻燃环氧树脂的极限氧指数约为24 %,阻燃级别仅达UL94 V2级。  相似文献   

17.
以三聚氰胺、甲磺酸为原料合成蜜白胺,用蜜白胺和苯酚、甲醛反应合成蜜白胺酚醛树脂,并对其进行了表征,同时对各步的反应条件进行了优化,还研究了蜜白胺酚醛树脂热稳定性,初步探讨了其阻燃性.结果表明,合成的蜜白胺酚醛树脂具有优良的热稳定性,在800℃具有很高的残炭率和优良的阻燃性能.  相似文献   

18.
壳聚糖/聚磷酸铵膨胀阻燃PP的阻燃及抑烟性能   总被引:1,自引:0,他引:1  
为了提高聚丙烯(PP)的阻燃和抑烟性能,将壳聚糖(CS)作为膨胀型阻燃剂的碳源、聚磷酸铵(APP)作为膨胀型阻燃剂的酸源和气源,在此基础上通过熔融共混的方法制备了PP/CS/APP复合材料。采用极限氧指数仪、锥形量热仪等仪器研究了PP/CS/APP复合材料的的抑烟性及阻燃性。研究结果表明:CS/APP添加量为30%时,复合材料的极限氧指数值最大可达28.1%;且复合材料在烟气释放总量、CO和CO_2排放上明显降低,抑烟性得到了提升;热释放速率峰值、平均热释放速率值、平均有效燃烧热值、总热释放量值降低,成炭率升高,PP/CS/APP复合材料更难点燃;火灾性能指数明显提高,阻燃性能得到了大幅度提升,火灾蔓延指数显著减小,同时火灾危险性也相应降低。  相似文献   

19.
综述了环状磷酸酯类阻燃剂的研究现状,包括合成工艺的改进、与其他阻燃剂复配协同阻燃及其在聚丙烯、环氧树脂等工程塑料以及纺织工业中的应用,并展望了环状磷酸酯类阻燃剂的发展趋势。其中合成工艺的改进主要通过添加催化剂、缚酸剂等来降低合成温度、缩短合成时间、降低成本;复配阻燃主要是以环状磷酸酯为基的磷-氮、磷-硅协同阻燃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号