首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为稳定提取滚动轴承故障特征,提出一种基于变分模态分解和多尺度排列熵的故障特征提取方法,并采用GK模糊聚类对轴承故障进行识别分类。首先对滚动轴承振动信号进行变分模态分解,得到包含故障特征信息的模态分量;进而利用多尺度排列熵量化各模态分量的故障特征,取各模态分量多尺度排列熵的平均值作为特征向量;最后通过GK模糊聚类分析获得故障样本的标准聚类中心,采用欧式贴近度进行故障识别分类。将所提方法应用于滚动轴承实验数据,通过分类系数与平均模糊熵对分类效果进行检验,并与经验模态分解多尺度排列熵结合GK模糊聚类的方法进行对比,结果表明,所提方法具有更好的分类性能,其故障诊断精度更高。  相似文献   

2.
基于ITD模糊熵和GG聚类的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
提出了一种本征时间尺度分解模糊熵和GG模糊聚类的滚动轴承故障诊断方法。首先,将滚动轴承的振动信号进行ITD分解,得到若干个固有旋转分量和一个趋势项。然后,将PR分量分别与原始信号进行相关性分析,筛选出前3个含主要特征信息的PR分量,并将筛选的PR分量的模糊熵作为特征向量。最后,将特征向量输入到GG分类器中进行聚类识别。通过模糊熵、样本熵和近似熵对比,实验结果表明模糊熵能更好的表征故障信号的特征信息;通过GG聚类、GK 聚类和FCM聚类对比,实验结果表明GG聚类效果明显优于FCM、GK的聚类效果。因此,实验证明了基于ITD模糊熵和GG聚类的滚动轴承故障诊断方法的有效性和优越性。  相似文献   

3.
针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的原始信号进行分解,得到若干个固有模式分量,并使用样本熵与模糊熵计算其熵值。通过主成分分析法对熵特征向量进行可视化降维,并作为模糊C均值、GK(GustafsonKessel)与GG聚类算法的输入,实现对滚动轴承的故障诊断。利用分类系数和平均模糊熵对上述聚类结果进行评价与对比。通过实验表明,所设计的模型能对熵特征向量进行可视化降维,且其故障识别聚类效果优于其他方法。  相似文献   

4.
孟宗  王亚超  王晓燕 《中国机械工程》2014,25(19):2634-2641
针对传统的局部均值分解(LMD)方法不能有效提取微弱高频信号成分的问题,提出了一种基于微分的微分局部均值分解(DLMD)方法,在此基础上,将DLMD、样本熵和模糊聚类分析相结合,提出了一种基于DLMD样本熵和模糊聚类的滚动轴承故障诊断方法。该方法首先对滚动轴承振动信号进行微分局部均值分解,得到若干具有物理意义的乘积函数(PF)分量,然后求取各PF分量的样本熵并将其作为特征向量,最后通过模糊聚类对特征向量进行识别分类。实验结果表明,基于DLMD样本熵和模糊聚类相结合的方法能够准确、有效地对滚动轴承故障信号进行识别分类。  相似文献   

5.
基于LMD近似熵和FCM聚类的机械故障诊断研究   总被引:1,自引:0,他引:1  
提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法.首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量,再通过相关性分析,筛选出与原始信号相关性最大的3个分量作为数据源,求取其近似熵作为特征向量,最后通过FCM模糊聚类对特征向量进行识别分类.实验表明,基于LMD近似熵和FCM模糊聚类相结合的方法对机械故障信号能够有效准确地进行识别分类,此外,将该方法与基于EMD近似熵和FCM结合的方法进行对比,结果表明该方法具有更好的故障识别效果.  相似文献   

6.
为充分利用振动信号的特征信息进行故障辨识,提出一种平滑先验分析(SPA)散布熵和GK聚类相结合的滚动轴承故障诊断方法.首先对滚动轴承振动信号进行SP A分解得到趋势项和波动项;然后分别计算趋势项和波动项的散布熵值构建特征向量;最后将特征向量输入至GK分类器中进行聚类识别.将该方法应用到不同工况下的滚动轴承实验数据中,分析结果表明,与传统的基于经验模态分解(EMD)散布熵和GK聚类的故障诊断方法相比,所提方法能够更加准确地实现轴承的故障判别.  相似文献   

7.
针对滚动轴承故障振动信号的复杂特性和局部均值分解(Local Mean Decomposition,LMD)方法存在的端点效应问题,提出了基于振动信号自相似性对左右端点两侧延拓来抑制端点效应问题的改进LMD、排列熵(Permutation Entropy,PE)及优化K-均值聚类算法相结合的轴承故障诊断方法。首先通过改进LMD将非线性、非平稳的原始故障振动信号分解出一系列的乘积函数(Production Function,PF)分量,对包含主要故障信息的PF分量提取PE值作为故障特征分量,在提取特征量的基础上,最后采用优化后的K-均值聚类算法对故障类型进行识别分类。将该方法应用在滚动轴承实验数据,实验结果表明该方法可以准确、有效的实现滚动轴承的故障诊断。  相似文献   

8.
《机械强度》2017,(2):261-266
针对滚动轴承非平稳性的振动信号,提出了基于总体局域均值分解(Ensemble Local Mean Decomposition,ELMD)及核密度估计的滚动轴承故障诊断方法。首先,对振动信号进行ELMD分解,获得一系列乘积函数(Production Function,PF),计算包含主要故障的PF分量的有效值、峭度、偏度系数,将其组合成特征向量;根据核密度估计的特性提出基于核密度估计的分类器,将特征向量输入分类器进行训练与测试,从而识别滚动轴承的工作状态和故障类型。实验结果表明,该方法能够有效的对滚动轴承故障进行识别,且效果较LMD方法好。  相似文献   

9.
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。  相似文献   

10.
针对滚动轴承故障信号具有的非线性和非平稳性,其故障特征难以提取的问题,提出一种奇异值分解(SVD)和局部均值分解(LMD)相结合的滚动轴承故障特征提取和诊断方法。首先,将轴承故障信号进行LMD分解得到若干PF分量;然后选取和原始信号相关度较大的PF分量,利用奇异值序列来构造其故障特征向量;最后,将得到的故障特征向量作为学习样本输入到支持向量机(SVM)中,对故障类型进行分类和识别。实验结果表明,LMD和SVD结合的故障特征提取方法,能有效提取滚动轴承不同状态下的故障特征,对不同故障状态做出准确分类。  相似文献   

11.
提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7个含主要特征信息的IMF分量,并将筛选的IMF分量的互近似熵作为特征向量。最后,将特征向量输入到GG模糊分类器中进行聚类识别。通过聚类三维图,对两种算法机械运行的4种状态进行了对比,验证了多元经验模态分解方法不仅可解决采样的不均衡问题,而且可解决EMD算法聚类的混叠问题。  相似文献   

12.
为了提高轴承故障特征信息提取的有效性,实现轴承故障模式智能识别,提高故障诊断效率。提出一种基于SVD-LMD模糊熵相结合的特征量化和PNN网络识别相结合的滚动轴承故障诊断方法。首先运用SVD降噪技术对原始信号降噪,运用LMD分解将降噪后的非稳定信号分解成若干个稳定的乘积函数分量(PF)。其次利用模糊熵能表征时间序列复杂程度并具有稳定的统计性,提取PF分量的模糊熵,组成N维特征向量,实现故障特征量化。构建PNN网络模型,将特征向量输入PNN训练,实现故障类型识别。最后对比PNN算法与BP算法性能,验证PNN算法的优越性。实验数据分析结果表明,所提方法在少量数据样本情况下故障诊断准确率高达93.75%。  相似文献   

13.
滚动轴承出现早期故障时,故障特征十分微弱,伴随严重的噪声干扰导致其故障特征难以识别,针对这一问题,提出了一种总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)和1.5维谱相结合的滚动轴承故障诊断新方法。该方法首先运用ELMD对振动信号进行分解,得到一系列乘积函数(product function,PF)分量,然后根据峭度准则以及相关系数准则提取一个包含主要故障信息的PF分量,最后对提取的PF分量进行1.5维谱分析,通过分析谱图中突出成分以确定轴承故障类型。通过仿真信号和工程实验数据分析验证了该方法的有效性。  相似文献   

14.
针对滚动轴承早期故障振动信号的非平稳特性和现实中受环境噪声影响严重,故障特征信息难以识别的问题,提出基于ELMD和MED的故障诊断方法。首先,运用ELMD对采集到的轴承振动信号进行分解,得到一系列PF分量;然后,依据相关系数与峭度准则,选取包含故障特征信息较丰富的PF分量进行MED滤波处理以消除噪声影响,凸现故障特征信息;最后,对降噪信号进行Hilbert包络谱分析,从谱图中准确地识别轴承故障特征频率。  相似文献   

15.
提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信号的样本熵和均方根值作为特征向量,从而得到训练样本和测试样本的特征向量集;第四步,通过KFCM聚类方法对训练样本特征向量集进行聚类分析,得到四种类型信号的聚类中心;最后根据测试样本特征向量与训练样本聚类中心欧式距离最小的原则识别故障类型。此外,将振动信号用经验模态分解(EMD)方法进行消噪,再用KFCM聚类进行分类识别,将两种方法的识别效果进行对比,结果表明所提方法的故障识别效果要优于EMD消噪和KFCM聚类相结合方法的识别效果。  相似文献   

16.
针对滚动轴承早期故障振动信号信噪比低、单一故障特征难以实现在整个复杂非线性状态空间上准确分类的局限,提出了基于本征时间尺度分解(intrinsic time-scale decomposition,简称ITD)和分形模糊熵的轴承早期故障智能诊断方法.首先,利用改进的ITD方法将包含大量背景噪声的非线性非平稳振动信号自适应地分解为不同频段的合理旋转(proper rotation,简称PR)分量;然后,提取蕴含故障信息的PR分量的分形维数和模糊熵,组成联合特征向量;最后,采用适合小样本模式识别的最小二乘支持矢量机(least squares support vectors machine,简称LSSVM)方法对故障类型进行分类.通过4种运行状态的滚动轴承实验表明,该方法能有效性地应用于滚动轴承早期故障智能诊断.  相似文献   

17.
张超  何闯进  何玉灵 《轴承》2021,(5):50-55,62
为准确提取滚动轴承振动信号的故障特征,并对不同状态信号进行划分,提出了一种基于自适应局部迭代滤波(ALIF)和模糊C均值(KFCM)聚类的滚动轴承故障诊断方法.首先,将多模态信号自适应分解为多阶单一模态分量;然后,结合相关系数提取出含有最多故障特征信息的最优分量,计算其近似熵值并构建特征向量矩阵;最后,将得到的特征向量...  相似文献   

18.
往复压缩机是用于压缩和输送气体的机械设备,针对其振动信号特征,提出基于LMD与多尺度排列熵的往复压缩机轴承间隙故障特征提取方法。利用具有保形特性的Hermite插值法替代传统LMD中滑动平均法构造均值与包络函数,提高LMD对非平稳信号的分解精度;以改进的LMD方法分解各状态下的振动信号,依据相关性系数筛选包含故障状态主要信息的PF分量;利用多尺度排列熵对各PF分量进行定量描述,并以平均类间样本距离对尺度因子进行优选,得出可分性良好的特征向量;利用SVM识别轴承间隙故障的类型,以识别准确率为依据,通过与不同方法所提取的特征向量进行对比,验证了方法的有效性。  相似文献   

19.
针对滚动轴承故障振动信号的多载波多调制特性,提出一种基于局域均值分解(local mean decomposition,简称LMD)能量特征的特征向量提取方法,并与支持向量机相结合用于滚动轴承的故障诊断。首先,采用LMD方法将复杂调制振动信号分解为若干单分量信号乘积函数(production function,简称PF);然后,对反映信号主要特征的PF基于时间轴积分,得到各PF分量能量矩并构造特征向量;最后,将其输入多分类支持向量机中,用于区分滚动轴承的故障类型与故障程度。对滚动轴承内圈故障、外圈故障及滚动体故障振动信号的分析结果表明,该方法能有效提取滚动轴承各工作状态信号的故障特征,能准确识别故障类型,同时对故障程度的判断表现出较高的识别率。  相似文献   

20.
针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障信息多,有的包含的少,为此采用K-L散度法提取出主要PF分量;计算主要PF分量的时域参数指标,将其组合成特征向量,根据马氏距离提出马氏距离敏感阈值来表征不同的故障状态,取多组正常信号的特征向量均值作为标准特征向量,计算未知特征向量与标准特征向量的马氏距离敏感阈值,从而对其故障状态进行识别。试验结果表明,在不同转速下,该方法能够有效的对滚动轴承故障进行识别,且效果较EMD方法好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号