首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Ni_3Al-based superalloy was rapidly solidified in the form of droplets with varying diameters. The cooling rate(R_c) is a function of diameter(D) of droplet. With the decrease in droplet sizes(increase in the cooling rates), the volume fraction of γ'+γ eutectic structure increases from 21.31(D = 1400 lm, Rc= 3.6 9 10~2 K s~(-1)) to 36.31%(D = 270 lm, R_(c-)= 2.3 9 10~3 K s~(-1)). Moreover, unimodal size distribution of nano-γ' exists in the droplets instead of bimodal dual-size distributions of γ precipitates that are normal in as-cast alloys.  相似文献   

2.
Microstructural instability with the precipitation of topologically close-packed (TCP) phases of an experimental nickel-based single-crystal superalloy has been investigated. A significant amount of σ phases are distinguished in the interdendritic region of the as-cast samples after thermal exposure at 900 °C for 1000 h. The σ phases are preferentially precipitated at the periphery of coarse γ/γ′ eutectic, and their morphological evolution from needles to granules is observed. Microstructural analysis suggests that the local segregation of Cr and Ti at the periphery of coarse γ/γ′ eutectic accounts for the formation of σ phases in the as-cast samples. After heat treatment with low solution temperature and short holding time, the dendritic segregation of alloying elements (i.e., W, Re, Ti and Ta) and the volume fraction of γ′ phase in the interdendritic region are similar to that of the as-cast samples. However, no TCP phases are present in the interdendritic region of the heat-treated samples after thermal exposure, which is primarily ascribed to the elimination of local segregation of Cr and Ti near the coarse γ/γ′ eutectic. Moreover, small quantities of μ phases are precipitated in the secondary dendrite arm near the interdendritic region after thermal exposure, due to the increased volume fraction of γ′ phase and the concomitant enrichment of W and Re in the γ matrix.  相似文献   

3.
The GH4169 superalloy with different content of δ-Ni3Nb phase was welded by tungsten inert gas welding. A detailed study of microstructure and hardness of heat-affected zone (HAZ) was performed in both as-welded and aged state. The results show that the precipitation of δ phase, especially the intergranular δ phase, can lead to the enrichment of Nb and Mo elements, which promote the formation of γ/Laves eutectic constituent at grain boundaries in HAZ. In as-welded state, the hardness decreases first and then increases (exhibiting a “V” shape) with distance away from fusion line in HAZ, which is governed by grain size. After aging treatment, however, the γ″ phase plays a key role in hardness and leads to the “Λ” shape profiles of hardness in HAZ.  相似文献   

4.
The as-cast microstructure, element segregation and solidification behavior of a multi-alloyed superalloy ЭК151 have been investigated. The results show that the severe element segregation leads to the complicated precipitations at the inter-dendritic region, including η-Ni_3(Ti, Nb), eutectic(γ + γ') and Laves, which shows the characteristics of both Ti, Al-strengthened and Nb-strengthened alloys. Differential thermal analysis, heating and quenching tests reveal the solidification sequence as follows: Liquids →γ matrix →(Nb, Ti)C →η-Ni 3(Ti, Nb) →eutectic( γ+γ') → Laves. The melting points are between 1250 and 1260 °C for(Nb, Ti)C, between 1200 and 1210 °C for η phase, between 1180 and 1190 °C for eutectic(γ+γ') and Laves. γ' initially precipitates from matrix at 1150 °C and achieves the maximum precipitation at 1130 °C. According to the microstructure evolution captured during solidification and composition analysis by an energy dispersive spectrometer and electron probe microanalyzer,(Nb, Ti)/Al ratio is put forward to explain the formation of η-Ni_3(Ti, Nb) and eutectic( γ+γ'). The solidification of γ matrix increased the Nb, Ti concentration in the residual liquids, so the high(Nb, Ti)/Al ratio would result in the formation of η-Ni_3(Ti, Nb); the precipitation of the phase consumed Nb and Ti and decreased the(Nb, Ti)/Al ratio in the liquid, which led to the precipitation of eutectic(γ + γ'). Laves formed by the sides of η-Ni_3(Ti, Nb) and in front of the eutectic( γ + γ') after Al, Ti were further depleted by the two phases and Cr, Co, Mo were rejected to liquids.  相似文献   

5.
The evolution of the microstructure and mechanical properties of alloy system with nominally composition Mg-5Li-1Zn-0.5Ag-0.5Zr-xGd (x = 0, 1.2, 2.4, 3.6, 4.8, 6) is evaluated based on computational phase diagram and corresponding experimental studies. The results show that grains are significantly refined with the increase of Gd content. The main phases of as-cast alloys are α-Mg, β-Li, AgLi2Mg, and Mg3Gd. With the increase of Gd content, the amounts of Mg3Gd phase and β-Li phase have been increased. When the Gd content exceeds 3.6 wt%, Mg3Gd phase precipitates in a form of the network at the grain boundaries. The precipitation of β-Li can be attributed to the competitive dissolution of Zn, Gd, and Li in Mg. Meanwhile, γ″ is formed after the addition of Gd, which grows and transforms into γ′ with the increase of Gd content. In solidification process, stacking faults are formed by solid transformation of partial α-Mg and Mg3Gd. Eventually, with the synergistic effect of Mg3Gd, β-Li, and γ″ (or γ′), as the Gd content increasing, the tensile strength of the alloy first increases, then decreases, and the elongation decreases. When the content of Gd is 4.8 wt%, the ultimate tensile strength and yield strength reach the maximum values of 227 MPa and 139 MPa, and the elongation is 18.1%, respectively.  相似文献   

6.
A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized with various withdraw rates.The shape and size of carbide microstructures were determined.As expected, the primary and secondary dendrite arm spacings (PDAS and SDAS) decrease with the increase of withdraw rate.The highest volume fraction of eutectic γ/γ' is observed at the 100 μm·s-1 withdraw rate.The volume fraction of eutectic γ/γ' does not appear to be a strong function of the withdraw rate.With increasing withdraw rate, interface morphologies change in the sequence of planar, cellular, and dendrite.There is a general refinement of the microstructure as the withdraw rate increases.EPMA analysis showed that withdraw rate does not have obvious influence on the segregation of elements.  相似文献   

7.
The relationship between the tensile properties and δ (delta) phase precipitation in cast alloy IN625 was investigated in this paper. Although the influences of δ phase on the mechanical properties have been pointed out in our previous work, the relationship is still not directly determined due to the coexistence of γ″ (gamma double prime) and δ precipitates. In order to exclude the effect from γ″ phase, various fractions of δ precipitates with few γ″ precipitates were obtained by a set of experimental alloys aging at 750 °C, and tensile tests were conducted in parallel. The results showed that both yield strength and ultimate tensile strength increased nearly in linear with increasing δ phase fraction, while the elongation was relatively and limitedly affected by δ precipitation when the area fraction of δ phase was above 10%.  相似文献   

8.
The effects of P and B on the matrix strength and precipitations of γ’ and γ’’ phases in the grain interior were re-recognized in this study. The combination addition of P and B markedly accelerated the precipitations of γ’ and γ’’ phases and strengthened the matrix of IN718 alloy when air-cooled from high temperature, while made no difference when waterquenched from high temperature. The effect of single addition of P on the precipitations of γ’’ and γ’ phases was the same with that of the combination addition of P and B, while the single addition of B had no effect on the precipitations of the two phases. Therefore, it was P rather than B which accelerated the precipitations of γ’ and γ’’ phases. P could take part in the precipitations of γ’ and γ’’ phases, which was revealed by electrochemical extraction and quantitative analysis of chemical composition. It also revealed that P atoms were dissolved in the c matrix to a relatively high degree at the temperature that γ’ and γ’’ phases began to precipitate, and consequently the precipitations of γ’ and γ’’ phases were accelerated. The first-principle calculation indicated that P decreased the formation enthalpies of γ’ and γ’’ phases when it occupied the Ni lattice sites in the two phases, which explained the effect of P on the γ’ and γ’’ phases.  相似文献   

9.
Two experimental alloys containing different contents of Ru were investigated to study the effect of Ru on the microstructural evolution during long-term thermal exposure. The increase in Ru promoted the formation of cubical, tiny, and even γ′ phase after full heat treatment. Moreover, the samples after full heat treatment were exposed at 1100 °C for different time. Based on the classical model by Lifshitz, Slyozov, and Wagner, the coarsening of γ′ phase of the alloy containing 2.5 and 3.5 wt.% Ru during the long-term aging was controlled by the interface reaction and diffusion, respectively. The γ/γ′ lattice misfit was more negative with the increment of Ru addition, which induced the formation of stable rafted γ′ phase in the alloy containing 3.5 wt.% Ru at the initiation of long-term aging. Besides, the increase in Ru reduced the diffusion coefficient, which could restrain the γ′ phase coarsening. The lower γ/γ′ lattice misfit of the alloy containing 2.5 wt.% Ru promoted the interface reaction, which induced the rapid coarsening of γ′ phase. Therefore, the increase in Ru improved the microstructural stability of the alloys. On the other hand, the raise of Ru induced “reverse partitioning” behavior, which was effective in suppressing the emergence of the topologically close-packed phase (TCP phase). The TCP phase occasionally occurred in the alloy containing 2.5 wt.% Ru, which was attributed to the high temperature and the supersaturation of the γ matrix. Moreover, the TCP phase was determined as μ phase, which had a high concentration of Co, Re, Mo, and W. A sketch map describing the evolution of the TCP phase was also constructed.  相似文献   

10.
In the present study, the effect of grit blasting and subsequent heat treatment on the stress rupture properties of a third-generation nickel-based single-crystal superalloy SGX3 sheet was studied. It was found that the stress rupture life of alloy SGX3 sheet at 980 °C/250 MPa was reduced by about 60% by only vacuum heat treatment at 1100 °C for 200 h and further reduced by 20% and 70% respectively with grit blasting of 0.3 MPa/1 min and 0.5 MPa/2 min before heat treatment. The microstructure analysis results indicated that the degradation of stress rupture life of alloy SGX3 sheet by vacuum heat treatment was mainly attributed to the variation of γ/γ′ microstructure, i.e., the decrease in γ′ volume fraction and the coarsening of γ′ precipitates. Furthermore, such degradation by grit blasting and subsequent vacuum heat treatment should be attributed to the formation of cellular recrystallization with different thicknesses at the surface of alloy SGX3 sheet, which not only acts as the vulnerable site for cracks to initiate and propagate but also reduces the effective loading area.  相似文献   

11.
高成薇  于金江  孙长波  孙晓峰 《铸造》2012,61(3):246-250
系统研究了抽拉速率对DZ951合金组织和性能的影响.试验结果表明:随着抽拉速率的增大,合金的定向凝固组织由粗枝状晶向细枝状晶演变,γ’相体积分数没有明显的变化但尺寸有所减小,而γ’相的形状逐渐趋向于规则立方;共晶含量、疏松水平和偏析程度都随抽拉速率的增加而变大;拉伸强度和伸长率都呈现出先减小而后增大的趋势.  相似文献   

12.
Hot deformation behavior,microstructural evolution and flow softening mechanism were investigated in Ti–46Al–8Nb alloy via isothermal compression approach.The true stress–strain curves exhibited typical work hardening and flow softening,in which the dependence of the peak stress on temperature and strain rate was obtained by hyperbolic sine equation with Zener–Hollomon(Z)parameter,and the activation energy was calculated to be 446.9 k J/mol.The microstructural analysis shows that the alternate dark and light deformed ribbons of Al-rich and Nb-rich regions appeared and were associated with local flow involving solute segregation.The Al segregation promoted flow softening mainly arising from the recrystallization of γ phase with low stacking fault energy.The coarse recrystallized γ and several massive γ phase were observed at grain boundaries.While in the case of Nb segregation,β/B2 phase harmonized bending of lamellae,combined with the growth of recrystallized γ grains and α+β+γ→α+γ transition under conditions of temperature and stress,leading to the breakdown of α_2/γ lamellar colony.During the hot compression process,gliding and dissociation of dislocations occurred in γ phase that acted as the main softening mechanism,leading to extensive c twins and cross twins in α/γ lamellae and at grain boundaries.In general,homogeneous microstructure during the hot deformation process can be obtained in Ti Al alloy with high Nb addition and low Al segregation.The deformation substructures intrinsically promote the formability of Ti–46Al–8Nb alloy.  相似文献   

13.
The crystallographic texture of ■-Fe4 N in compound layer and its influences on the tribological properties of nitrided steel 38 Cr Mo Al are investigated in the study. The preferred orientation of(200)■ is produced by low-temperature nitriding in atmosphere with low nitrogen–hydrogen ratio and increases with the nitriding time. The preferred orientation of(220)■ appears after 72 h cyclic nitriding. The orientation relationships(0001)_ε//(101)_■ and [110]_ε//[111]_■,(111)_■//(0001)_ε and 011_■//[1■10]_g,(200)■//(110)_■ and [011]_■//[111]_■, as well as (1■03)_ε //(220)_■ and [0100]_ε//[1■0]_■ are established by first-principles method. The misfit of interatomic distance(δ), determining the phase transition resistance, is calculated. Accordingly, two reaction pathways during nitriding, ■→■ and ■→ε→■, are assumed, which determines the preferred orientations of ■-Fe_4 N. Results of wear tests demonstrate that the specimen with preferred orientation of(200)■ exhibits lower frictional coefficient and lower wear rate in comparison with the specimen with(220)■ preferred orientation.(111)■ texture usually relates to the lower frictional coefficient but higher wear rate due to the main slip system parallel to the sliding plane. Therefore, the(200)■ preferred orientation has a positive significance in improving the wear properties of steels.  相似文献   

14.
In this work, water cooling, air cooling (AC) and furnace cooling (FC) were applied to investigate the effect of cooling rate on microstructure evolution of primary γ′ in a newly designed Ni3Al-based alloy. The results showed that nucleation rate of primary γ′ increased with increasing cooling rate. In addition, higher cooling rate shortened growth period of primary γ′, which made its morphology close to the initial precipitated γ′. For AC and FC specimens, due to the lower cooling rate, primary γ′ possessed longer growth period and its morphology was mainly due to the evolution of lattice misfit between γ and primary γ′. Meanwhile, growth of primary γ′ depended on lattice misfit distribution between its corner and edge area. Moreover, primary γ′ morphologies of sphere, cube and concave cube with tip corners were illustrated by considering interaction between elemental diffusion and elastic strain energy.  相似文献   

15.
Coarsening of cuboidal γ' precipitates and relevant diffusion process in Ni-based single-crystal superalloy CMSX-4 were investigated at 1000,1020 and 1040℃ for specific times.The y' coarsening kinetics followed a cubic rate law with time and was presumably controlled by bulk diffusion of elements in y matrix.The associated diffusion activation energy was experimentally determined to be about 300 kJ/mol when it is considered the temperature-dependent thermo-physical parameters in modified Lifshitz-Slyozov-Wagner theory.The influence of temperature on γ/γ' microstructure is briefly discussed based on pseudo-binary [Ni]-[Al] phase diagram.Interactions among elements can effectively raise the local vacancy formation and vacancy-atom exchange barriers close to γ-and γ'-partitioning elements,respectively.Thus,it can significantly reduce the inter-coupling migrations of atoms during the macroscopic cross-diffusion process associated with γ' coarsening of Ni-based superalloys.  相似文献   

16.
M718 alloy with an extra high Mo content of 7.50 wt% which reduced Nb addition and increased Al and Ti additions within the composition specifications of 718 alloy has been designed to increase the service temperature of 718 alloy. And the effect of the heat treatment on the microstructure and mechanical properties of M718 alloy has been investigated in this study. The results showed that Laves phase precipitated on the grain boundaries of M718 alloy instead of d-Ni_3 Nb phase in718 alloy, and y'and y'phases precipitated in the matrix of M718 alloy as that in 718 alloy. Increasing the solution temperature from 960 to 1050 ℃ noticeably reduced the intergranular precipitation of Laves phase. The precipitation of Laves phase was appropriate at 1020 ℃ for improving the grain boundary cohesion. Increasing the two-stage aging temperatures markedly increased the sizes of y' andy'phases. As a result, the strength of M718 alloy increased.  相似文献   

17.
The effects of ausforming procedure and subsequent annealing treatments on microstructures of cobalt(Co)samples are investigated by electron channeling contrast and electron backscatter diffraction techniques. Results show that the ausformed Co samples consist of coarsen blocky laths(single ε phase) with the irregular morphology and the ultra-fine acicular laths(dual phase: γ and ε) with the slender and rectangular morphologies. As compared to the slight reduction sample, the much denser acicular laths are observed in the heavily ausformed sample. In addition, recrystallization behavior and annealing-induced γ→ε transformation have occurred in ausformed Co samples during the annealing treatment.  相似文献   

18.
The as-cast microstructures of high carbon high speed steels (HC-HSS) made by sand casting,centrifugal casting and electromagnetic centrifugal casting, respectively, were studied by using of optical microscopy (OM) and D/max2200pc X-ray diffraction. The results show that the microstructure of as-cast HCHSS is dominated by alloy carbides (W2C, VC, Cr7C3), martensite and austenite. The centrifugal casting and electromagnetic centrifugal casting apparently improve the solidification structure of HC-HSS. With the increase of magnetic intensity (B), the volume fraction of austenite in the HC-HSS solidification structure increases significantly while the eutectic ledeburite decreases. Moreover, the secondary carbides precipitated from the austenite are finer with more homogeneous distribution in the electromagnetic centrifugal castings. It has also been found that the lath of eutectic carbide in ledeburite becomes finer and carbide phase spacing in eutectic ledeburite increases along with the higher magnetic field strength.  相似文献   

19.
The application and component designs of single crystal superalloys are restricted by the precipitation of topologically closed packed(TCP) phases,which can deteriorate the microstructural stability of the alloys severely.Limited researches concerning the type and morphology evolution of TCP phases under elevated temperature conditions have been reported previously.In the present work,three Re-containing single crystal alloys were designed to investigate TCP phase evolution via long term isothermal exposure tests at 1120℃ while the effects of Re on the microstructural characteristic and elements segregation were also clarified.The results showed that the addition of Re increased the instability of the alloys and the volume fraction of the TCP phases exceeded 5 vol% when the Re content reached 3 wt%.The increasing Re content had also raised the precipitation temperature of TCP phases but it did not change the type of them after long term aging;all the TCP particles were identified as μ phase in this study.Moreover,the elements segregation became considerably serious as Re addition increased constantly,which brought about various morphologies of the μ phase in the experimental alloys.In particular,the rod-like and needle-like μ phases demonstrated the typical orientation within γ matrix while the blocky μphase was dispersedly distributed in the space.No specific orientation relationship could be observed in the μ phase when the addition of Re exceeded certain threshold value.  相似文献   

20.
研究了抽拉速率对一种定向凝固镍基高温合金组织与偏析的影响。结果表明,随着抽拉速率的增加,固液界面由平界面向胞状,再到粗枝状,最后到细枝状的演变过程,枝晶不断细化;一次和二次枝晶间距不断变小,γ′相形貌越来越呈规则的立方体,γ′尺寸逐渐变小。元素偏析程度先增大后减小,并在100μm/s时到达峰值;共晶和碳化物尺寸均随着抽拉速率的增大而变小,碳化物和共晶体积分数随抽拉速率增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号