首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为实现磷锗锌(ZnGeP2)晶体超精密切削,提高表面加工质量,获得纳米级的超光滑表面,基于纳米压痕实验计算出磷锗锌晶体表面脆塑转变临界深度.在此深度内切削材料产生脆塑转变,并以塑性方式去除.在此基础上,采用单点金刚石飞切机床DFC600A开展磷锗锌晶体超精密切削.通过控制切削深度低于磷锗锌晶体脆塑转变临界深度,使材料表...  相似文献   

2.
钇铝石榴石(YAG)晶体是制造固体激光器的重要材料,超精密磨削是加工YAG晶体等硬脆材料零件的重要方法,研究硬脆材料加工表面的微观变形、脆塑转变机理对超精密磨削加工具有重要的指导作用。为了实现YAG晶体低损伤磨削加工,获得高质量表面,基于弹塑性接触理论和压痕断裂力学,通过分析单磨粒划擦作用下材料表面的变形过程,考虑材料的弹性回复、微观下力学性能的尺寸效应,建立了脆塑转变临界深度的预测模型,并计算得到YAG晶体的脆塑转变临界深度为66.7 nm。在此基础上,通过不同粒度砂轮超精密磨削YAG晶体试验对建立的脆塑转变临界深度预测模型进行验证,并计算不同粒度砂轮在相应工艺条件下的磨粒切深。结果表明,磨粒切深高于脆塑转变临界深度时,YAG晶体磨削表面材料以脆性方式被去除,磨削表面损伤严重;磨粒切深低于脆塑转变临界深度时,磨削表面材料以塑性方式被去除,能够获得高质量磨削表面,加工表面粗糙度达到1 nm。建立的脆塑转变临界深度预测模型能够为YAG晶体的低损伤超精密磨削加工提供理论指导。  相似文献   

3.
为了探寻单晶氧化镓晶体超精密加工的易切削方向以及临界切削深度,将单晶氧化镓晶体(100)晶面和(010)晶面等角度划分成24等份,对每个方向上用Berkovich金刚石压头进行纳米压痕试验、用Cube金刚石压头进行纳米压痕和划痕试验。试验结果表明,在(100)晶面120°方向上脆塑转变临界切深最大,为623 nm左右,此时脆塑转变临界载荷为29.4 mN;在(010)晶面105°方向上脆塑转变临界切深最大,为686 nm左右,此时脆塑转变临界载荷为20.0 mN。氧化镓晶体存在强烈的各向异性,其中(010)面各向异性较为强烈。对比硬度、弹性模量、断裂韧度和相对脆塑转变临界切深随方向的变化趋势,结合各方向的划痕试验结果可以看出,氧化镓晶体(010)面为易加工晶面,105°方向为易加工方向。  相似文献   

4.
氟化钡晶体在红外成像与激光系统有着广泛而重要的应用,作为典型的萤石型离子晶体,其材料去除机理目前尚不清晰,获得超光滑表面仍极具挑战.本研究采用槽切法研究氟化钡晶体脆塑转变临界深度、脆塑转变机制及表面缺陷形成机理.通过分析最大未变形切屑厚度随切削参数的变化规律,提出实现氟化钡晶体塑性域切削的理论模型.对氟化钡晶体进行了端...  相似文献   

5.
为了分析新一代光电子材料氧化镓晶体在超精密磨削、研磨加工过程中的裂纹成核位置及扩展方向,建立了单颗磨粒刻划氧化镓(010)晶面的弹性应力场模型,分析了氧化镓(010)晶面的脆塑性转变临界切削深度。通过MATLAB软件分析预测刻划氧化镓晶体过程中表面径向裂纹的成核位置及扩展方向,分析结果表明:当切削深度小于临界切削深度时,径向裂纹成核位置在磨粒的后方,裂纹扩展方向与切削方向之间的夹角在33°左右;当切削深度超过临界切削深度时,径向裂纹成核位置进一步向磨粒后方移动,裂纹生成方向与刻划方向之间的夹角在51°左右。为验证理论分析结果,对氧化镓晶体进行了纳米刻划试验,对比分析表明,氧化镓应力场的解析结果与试验数据高度一致。在线性加载条件下,Cube金刚石压头在氧化镓晶体(010)晶面上产生的径向裂纹偏转角在33.37°~51.45°之间。  相似文献   

6.
纳米孪晶立方氮化硼机械研磨机理研究   总被引:1,自引:1,他引:0  
为了将新型超硬纳米孪晶立方氮化硼(nt-c BN)材料制备成能够实现铁基金属材料,特别是硬度较高材料的精密及超精密切削刀具,针对机械研磨方法,从理论和试验角度分别对纳米孪晶立方氮化硼材料的机械研磨机理进行了研究。对纳米孪晶立方氮化硼材料动态脆塑转变临界研磨深度进行了理论分析及试验验证;基于临界研磨深度,实现了对该材料的塑性域精细研磨;利用理论计算及原子力显微镜表面检测结果,针对研磨后塑性沟槽深度及宽度,分析了研磨过程中塑性沟槽形成机理。研究结果表明,纳米孪晶立方氮化硼材料动态脆塑转变临界研磨深度为23.9 nm;使用0.5μm金刚石研磨颗粒研磨材料表面粗糙度达到1.99 nm,PV值77.05 nm;研磨塑性沟槽深度理论最小值2.25 nm,与试验结果相吻合;研磨塑性沟槽宽度为固定、游离研磨颗粒共同作用的结果,宽度保持在亚微米级。因此,纳米孪晶立方氮化硼材料具有较好的可加工性,采用机械研磨方法能够实现较高精度表面的高效率加工。  相似文献   

7.
硬脆光学晶体材料超精密切削理论研究综述   总被引:15,自引:1,他引:14  
硬脆光学晶体材料在航空航天、光学和光电子等领域得到了广泛应用,其超精密切削加工技术越来越受到重视,从切削模型、脆塑转变机理和研究方法等三个方面介绍了硬脆光学晶体材料超精密切削技术的发展和国内外研究现状,并对今后的研究方向作了阐述。  相似文献   

8.
通过各向同性热解石墨的纳米印压试验结果分析,并结合基于晶体结构和压头形状的应变梯度理论研究,计算出各向同性热解石墨材料发生脆塑性转变的临界切削厚度,其临界切削厚度在(335.63~1343.15)nm之间,在此范围内各向同性热解石墨材料发生了脆塑性转变,主要以塑性方式去除为主.根据脆性材料超精密切削中的脆塑性转变机理,建立了各向同性热解石墨超精密车削加工模型,并通过超精密车削试验对研究结果进行验证,表明了所建立超精密切削模型的准确性.  相似文献   

9.
脆性晶体的超精密加工   总被引:1,自引:0,他引:1  
用单刃金刚石车削试验研究超精密加工脆性晶体材料的机理。通过讨论加工参数和材料特性来研究脆塑性转换机理。重点研究了加工单晶材料时晶向对临界切深、微切削力和表面粗糙度的影响;还探讨了加工多晶材料时晶界台阶的形成。超精密加工各种脆性晶体都可得到各向同性的纳米级表面粗糙度的光学表面。  相似文献   

10.
硬脆晶体材料,如SiC、Ge和Si等,由于其临界切削深度极小,常规加工方法很难实现塑性模式加工,研究横向超声振动金刚石线锯对硬脆材料锯切力和临界切削深度的影响有重要意义。在研究线锯受迫振动的基础上,分析金刚石线锯在横向超声波激励下柔性旋转点切割硬脆材料的条件;用特征函数对超声激励下金刚石线锯的振动切割状态进行表征;应用磨削理论建立了单颗金刚石磨粒切割硬脆材料的力学模型;推导出超声振动激励下金刚石线锯锯切硬脆材料临界切削深度的计算公式。以单晶SiC为对象,进行了超声振动线锯切割和普通线锯切割对比试验。结果表明相同条件下,超声振动线锯切割SiC的锯切力比普通线锯的锯切力减少22.4%~64.2%,临界切削深度增加1倍,晶片表面粗糙度有明显的改善。试验结果与理论分析具有良好的一致性。  相似文献   

11.
针对KDP在SPDT切削过程中容易产生凹坑、划痕、裂纹等表面缺陷问题,提出利用热激励的方式增大KDP晶体塑性切削域深度,降低各向异性、机床运动误差、环境振动等因素对加工过程的影响,进而提高SPDT切削加工过程稳定性的方法。通过纳米压痕试验获得了KDP晶体表面在不同温度状态下的硬度和脆塑性转变深度变化规律,并在SPDT机床上采用金刚石刀具开展了KDP晶体飞切划痕实验,进一步验证了适当提高KDP晶体温度可以增大KDP晶体脆塑性转变临界切削深度。在此基础上,对KDP晶体开展了不同温度状态下的切削实验,实验结果表明在相同工艺参数下,随着温度的升高,表面粗糙度Sa值从3.2nm降低至1.6nm。  相似文献   

12.
光学玻璃塑性域切削试验研究   总被引:1,自引:0,他引:1  
对光学玻璃材料BK7进行压痕试验及超声振动变切深刻划试验.通过对BK7表面垂直加载不同的载荷,观察分析不同的载荷下材料表面的变形形式得到了材料分别发生塑性变形,脆塑转变,脆性破坏时的垂直载荷的范围和切削深度的范围.利用超声振动系统对试件进行变切深刻划试验,得到了材料由塑性切削到脆性破坏的连续变化过程的表面形貌.实验结果表明超声振动切削有效提高了临界切削深度.  相似文献   

13.
采用超精密飞切技术实现的脆性光学晶体材料表面的微结构功能具有重要应用。针对超精密车削机床缺乏竖直Y轴的问题,开发了一种铝制径向调刀飞刀盘,从而可以保证飞切槽形时对槽深的控制。采用差动螺旋进给机构在传统飞刀盘盘面径向设计了金刚石刀具的微调进给装置,并设计了动平衡的粗、精调功能。通过对单晶锗片表面的超精密飞切弧形槽微结构阵列的加工实验表明,该飞刀盘既可以有效相对工件表面进行对刀,也可以精确控制落刀深度;通过合理确定落刀深度,可以实现脆性晶体材料单晶锗表面弧形槽微结构的塑性区超精密飞切加工。  相似文献   

14.
基于分子动力学单晶锗的切削特性分析   总被引:2,自引:0,他引:2  
单晶锗属于硬脆性光学晶体材料,这类材料脆性大、易解理。由于硬脆光学材料精密成形工艺性能差、晶格的各向异性和脆塑转变机理的存在,导致对其切削加工时,加工表面易产生裂纹和凹坑等缺陷,这就严重影响其表面质量,而分子动力学模拟则完全可以克服在超精密加工过程中的试验、计算和分析等这些困难。利用分子动力学模拟对切削过程进行研究,可得出理想的加工表面质量。  相似文献   

15.
最佳邻接量是高精度加工玻璃模压成形用磷化镍镀层材料微沟槽模具的重要参数。本文提出了一种利用小角度微沟槽交叉切削技术快速确定微沟槽最佳邻接量极限范围的方法。该方法利用沟槽小角度交叉切削材料去除形式与沟槽邻接切削相近的特点,对微沟槽邻接量的极限范围进行预测。首先,以沟槽交叉角度和交叉沟槽深度为变量设定切削条件,得到多组渐变棱;然后,观测交叉渐变棱形貌并结合材料塑性变形法则与脆塑转变理论分析棱边上的材料去除状态;通过观察交叉渐变棱与沟槽邻接脊部在切削过程中去除材料的截面形貌建立二者的关系;最后,分析交叉渐变切入棱与切出棱形貌的差异,确定脆塑转变的邻接量范围。基于上述方法,观测了交叉渐变棱的形貌并进行几何计算,确定磷化镍模具微沟槽邻接切削产生脆性剥离现象的临界邻接量范围为570~720nm。利用微沟槽模具超精密切削加工实验验证了该方法的有效性,加工出了高质量模具并用于微沟槽玻璃模压成形,实现了玻璃微沟槽的精密制造。  相似文献   

16.
金刚石砂轮磨削加工仍然是最有应用前景的硬脆材料高效加工途径,而弄清磨削加工机理对实现硬脆材料元器件的高效超精密加工具有重要意义。介绍硬脆材料微纳切削的静态压痕断裂力学模型与动态切削加工近似模型这两种经典模型,诠释了塑脆转变机制。深入分类探讨了硬脆材料的脆性去除、塑性域去除与粉末化去除这3项加工机理,材料去除是裂纹演化、挤压微破碎、相变与位错等因素导致而成。塑性域加工是改善硬脆材料加工损伤的重要措施,而力热耦合作用场、材料晶面晶向等因素都是影响塑性域去除机制的关键。  相似文献   

17.
微纳切削加工是硬脆材料最高效的精密/超精密加工方法,而模拟简化试验与计算机模拟能为错综复杂的切削加工过程提供重要研究手段,便于从宏微观跨尺度层面阐释硬脆材料切削加工机理。有限元、离散元与分子动力学等计算机模拟手段能可视化虚拟实际切削加工难以展示的应力应变、裂纹演化、材料去除等动态过程。微纳切削加工模拟研究证实了硬脆材料在特定临界条件下发生脆塑转变效应,为纳米尺度的塑性域超精密加工技术提供重要依据。然而,微纳切削模拟研究方法因受限于理想化模型与时空尺度差异等因素,还存在一些亟待优化解决的复杂难题。  相似文献   

18.
张国锋  周明  贾鹏 《工具技术》2010,44(10):14-16
脆性材料的脆塑性转变临界切削深度是影响表面加工质量以及生产率的重要因素。光学玻璃属于典型的脆性材料,具有较高的硬度和脆性,使其在金刚石切削加工中的可加工性较差。为改善其加工性能、研究切削液对其临界切深的影响,本文选择不同浓度的Na2CO3溶液为切削液,在有、无切削液作用的不同条件下进行了光学玻璃SF6变切深刻划试验。利用共聚焦显微镜检测了SF6材料的临界切削深度,研究了切削液对临界切削深度的影响。试验结果表明采用Na2CO3溶液作切削液可提高光学玻璃SF6材料的临界切削深度。  相似文献   

19.
为了实现红外光学微结构表面的高效、高精度、低损伤加工,提出了一种超精密自适应飞刀切削方法,并进行了实验验证。根据飞刀切削的运动学特性,建立了飞刀切削塑性加工模型。以最大切屑厚度始终小于脆塑转变临界为原则,根据微结构表面的局部形貌特征,采用迭代算法规划出具有动态变化进给速度的刀具轨迹。最后,将所提出方法与传统飞刀切削方法进行对比实验,验证了所提出自适应飞刀切削方法的有效性。通过实验成功在单晶硅材料上加工了无脆性断裂的微沟槽,表面粗糙度达到18 nm。与传统飞刀切削方法相比,超精密自适应飞刀切削方法在不降低进给速度的前提下,避免了脆性断裂,加工效率是传统方法的2.5倍。  相似文献   

20.
光学脆性材料的金刚石切削加工   总被引:2,自引:4,他引:2  
重点对脆性材料的超精密研磨、抛光加工技术及超精密磨削加工技术和超精密切削加工技术进行了分析研究。分析表明,硬脆材料光学元件主要应进行超精密研磨、抛光及超精密磨削加工;软脆材料光学元件主要应进行金刚石切削加工。对软脆材料金刚石切削进行了试验设计,指出了光学脆性材料的金刚石切削加工过程不同于金属加工过程,通过控制切削条件可以实现脆性材料塑性域加工,提高光学脆性材料的表面加工质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号