首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
渐开线直齿圆柱齿轮非稳态热弹流润滑分析   总被引:7,自引:0,他引:7  
应用多重网格技术,不考虑轮齿表面粗糙度的影响,假设润滑剂为牛顿流体,考虑齿轮重合度对轮齿载荷的影响,根据实际轮齿载荷谱简化的轮齿载荷函数,求得了渐开线直齿圆柱齿轮非稳态热弹流润滑问题的完全数值解。结果表明,考虑油膜温升后,温度对轮齿啮入和啮出点的油膜厚度有显著影响。齿轮啮合过程中的最大油膜压力、最高油膜温升和轮齿间摩擦因数最大值都发生在啮合节点附近。在传动比大于1时,齿轮啮合过程中的最小油膜厚度通常在轮齿的初始啮入点。两轮齿间的油膜温升和摩擦因数受滑滚比、卷吸速度和载荷的影响。  相似文献   

2.
针对直齿轮副啮合过程存在时变摩擦问题,建立直齿轮副啮合模型,推导齿轮副在啮合点处的相对滑动速度、卷吸速度、滑滚比、综合曲率半径及轮齿接触压力,研究单双齿交替啮合过程中单齿承载变化下的齿面摩擦因数变化规律。基于势能法推导计及时变摩擦的直齿轮副啮合刚度解析式,分析无摩擦力、定摩擦力和时变摩擦力作用下直齿轮副啮合刚度的变化规律,进而研究时变摩擦作用下齿轮模数、齿宽、压力角、粗糙度、输入转矩等参数对直齿轮副时变啮合刚度的影响规律。研究结果表明,时变摩擦因数在单双齿交替啮合区发生突变,在节点处趋于0;摩擦力作用下单齿刚度在啮入阶段将增大,啮出阶段将减小;定摩擦力作用使啮合刚度在节点处发生突变;时变摩擦力作用使啮合刚度在单双齿交替啮合处发生突变,在节点处与无摩擦时变化规律一致;齿轮副啮合刚度随模数、齿宽增大而增大,随压力角增大而减小;啮合刚度变化量随齿面粗糙度增大而增大,随输入转矩增大而减小。  相似文献   

3.
渐开线斜齿轮传动摩擦动力学耦合研究   总被引:1,自引:0,他引:1  
综合考虑时变啮合刚度、轴承刚度以及摩擦力等对动力学行为的影响,基于载荷分担理论和动力学、弹流润滑理论,建立12自由度斜齿轮摩擦动力学模型。采用解耦方法求解该摩擦动力学模型,将动力学求解获得的动态轮齿作用力用于润滑分析中,而润滑分析获得的摩擦因数再次用于动力学分析计算中。通过实例研究了齿面摩擦学特性和动力学行为以及两者之间的耦合关系。研究表明:考虑耦合效应后的斜齿轮动态响应与定摩擦因数下的动态响应相比有较大不同,且时变摩擦力对垂直于啮合线方向的动态响应影响尤为显著;动态载荷等对斜齿轮润滑特性影响较大,转速接近共振转速时,动态载荷作用下的油膜厚度、油膜承载比例、油膜温升和摩擦因数分布规律与幅值与稳态载荷相比差异明显。动态载荷对斜齿轮润滑特性以及时变滑动摩擦力对动态响应的影响不可忽略。  相似文献   

4.
渐开线直齿轮瞬态微观热弹流润滑分析   总被引:19,自引:0,他引:19  
考虑了瞬态效应、轮齿表面油膜温度场和轮齿表面纵向粗糙度等因素,对渐开线直齿圆柱齿轮的弹流润滑问题进行研究。载荷由双齿或单齿承担,根据实际载荷谱简化的轮齿载荷曲线,利用压力求解的多重网格法和弹性变形求解的多重网格积分法以及温度求解的逐列扫描技术,得到渐开线直齿轮瞬态微观热弹流润滑问题的完全数值解,讨论了轮齿间油膜的厚度、压力、温度沿啮合线的变化规律。数值计算结果表明,齿轮表面纵向粗糙度对轮齿间油膜的压力、膜厚、温升都有较大影响。考虑轮齿表面粗糙度后,油膜压力和温升明显增大,并随压力的增加而影响越来越显著,粗糙峰使油膜压力分布和温度分布产生振荡,轮齿表面的粗糙峰对摩擦因数影响较小,摩擦因数和最高温升在节点两侧最大。  相似文献   

5.
为探究齿轮的动力学特性与弹流润滑耦合效应,综合考虑齿轮啮合刚度的时变效应和表面粗糙度对齿轮动力学行为的影响,基于动力学理论,建立了6自由度摩擦动力学模型。采用解耦方法求解该模型,将求解获得的轮齿动态啮合力和表面波动速度用于弹流润滑分析中。通过实例研究了动、静两种载荷模型下齿轮的弹流润滑特性。研究表明,与平稳载荷相比,基于动载荷模型的齿轮弹流润滑研究更能准确反映齿轮的瞬态润滑特性,在啮合刚度的激励下,润滑时油膜压力和油膜厚度均表现出一定的振荡效应。啮入点、单齿啮入点以及单齿啮出点存在较大的冲击,是齿轮弹流润滑的危险点。  相似文献   

6.
考虑油膜润滑作用的渐开线齿轮动载荷分析   总被引:2,自引:0,他引:2  
以渐开线齿轮为研究对象,综合考虑齿面摩擦和油膜润滑作用,结合油膜与粗糙峰共同承载理论建立齿轮系统动力学模型。为深入研究不同转速对齿轮动态特性的影响,给出基于最小势能原理的稳态载荷分布模型,并对比分析渐开线齿轮在不同转速下冲击载荷沿啮合线的分布规律。计算结果表明:润滑油膜对共振区的动载荷有一定程度的削弱作用;齿廓误差越大,冲击越明显;油膜刚度呈强非线性,且随着润滑油粘度的增加而增大;低速时,冲击动载荷均值接近稳态分布,但在单双齿啮合交替点有明显波动;随着转速的升高,高频冲击衰减,动载荷和相对线位移逐渐呈现周期波动;随着螺旋角的增加,动载荷趋于平稳,且幅值有所降低。啮合初始段,摩擦因数较高;退出啮合段,动载荷减小,油膜变厚,摩擦因数明显降低。随着粗糙度的增加,粗糙峰接触比例升高,摩擦因数变大。  相似文献   

7.
为解决直齿圆锥齿轮的端啮问题,通过对直齿圆锥齿轮进行齿廓修形,提高小端的油膜承载能力,使得载荷沿齿宽方向分布均匀。齿廓修形先采用二次抛物曲线,再改变主动轮和从动轮的齿顶修缘高度,确定修形参数后,建立直齿圆锥齿轮无限长线接触弹性流体动力润滑模型,压力和膜厚采用多重网格法求解,弹性变形采用多重网格积分法求解。齿顶修缘后啮入点的油膜压力比原来小,油膜厚度变大;二次抛物曲线修形后,啮入瞬时点和啮出瞬时点的油膜压力在赫兹接触区明显降低,赫兹接触区的油膜厚度明显增大,沿啮合线分布的最大油膜压力降低,最小油膜厚度增大,中心油膜压力降低,中心油膜厚度增大;修形参数的变化影响修形后的油膜压力和油膜厚度;修形改变了齿宽方向的载荷分布,直齿圆锥齿轮的小端和大端的载荷差距减少,齿面载荷由端部向齿宽中部转移。研究结果说明,齿廓修形可以改善齿轮的润滑状况,提高啮合过程的油膜压力,减少齿面的摩擦和磨损,同时也可以避免齿面胶合的产生。  相似文献   

8.
齿轮传动的线外啮合与冲击摩擦   总被引:11,自引:2,他引:9  
通过齿轮传动线外啮合机理分析,提出沿啮合作用线方向构建"系统等效误差-轮齿综合变形"计算模型的方法.按统计规律将齿轮主要误差项沿啮合线一次合成为系统等效误差;根据啮合原理和"轮齿综合变形-载荷历程"曲线,反推出线外啮入冲击点的轮齿变形.将系统误差与轮齿变形沿啮合线二次合成,推导出线外啮入冲击点几何位置判据.获得啮入点的几何位置和冲击力这一关键数据,并求解出线外啮合段各点的几何位置和冲击力.进而建立线外啮入冲击摩擦模型,推导出各接触点的冲击摩擦力与摩擦因数.与相关研究比较,以上模型和计算方法及其分析结果比较可靠.上述研究对于深入探索齿面摩擦性态和齿轮传动减振降噪等具有一定的理论价值.  相似文献   

9.
为探讨热流固耦合下柱塞泵配流副参数对摩擦性能的影响,建立配流副的润滑模型,采用有限差分法对雷诺方程、能量方程和弹性变形方程进行求解,考虑黏度-温度、黏度-压力的关系,利用松弛迭代法求得热流固耦合下油膜压力、弹性变形与油膜温度分布的数值解,并运用MATLAB得到油膜压力、弹性变形、油膜温度分布云图;分析配流副参数对油膜承载力、摩擦力、摩擦转矩和摩擦因数的影响。结果表明:缸体倾斜角度和初始油膜厚度对油膜承载力的影响较大,增大缸体倾斜角度和减小初始油膜厚度,可提高油膜承载能力;减小润滑油黏度、增大初始油膜厚度能有效降低润滑摩擦过程中的摩擦力和摩擦因数。  相似文献   

10.
微观形貌表征对直齿轮跑合弹流润滑的影响   总被引:1,自引:0,他引:1  
高斯分布粗糙度函数相比余弦粗糙度函数,能更贴近地描述跑合前齿面粗糙轮廓曲线幅度分布。研究高斯分布的齿面粗糙度对齿轮跑合过程中轮齿间油膜压力和膜厚的影响,探讨瞬态效应对轮齿润滑的影响,利用多重网格技术求得齿轮瞬态微弹流润滑的完全数值解。结果表明:采用高斯分布粗糙度时油膜压力变化明显,更符合啮合点出现粗糙峰而形成的轻微冲击对轮齿间油膜的影响,而采用余弦粗糙度时油膜压力则变化相对比较缓和;采用高斯分布粗糙度的最大油膜压力明显大于采用余弦粗糙度的最大油膜压力,故按照余弦粗糙度计算的最大油膜压力与实际最大油膜压力可能有较大偏差。  相似文献   

11.
基于虚拟样机技术,考虑齿轮啮合过程中摩擦力对接触碰撞力的影响,用ADAMS软件建立渐开线齿轮啮合的动力学模型,通过仿真分析得到与理论计算基本吻合的仿真结果,并对啮合过程中轮齿间摩擦力、摩擦因数、相对滑动速度的变化及相互关系进行研究。结果表明:运用虚拟样机技术可以实现对渐开线齿轮啮合的摩擦动力学研究,从而为进一步研究齿轮啮合摩擦学特性奠定基础,具有良好的工程应用前景。  相似文献   

12.
基于斜齿轮时变接触线长度变化规律,推导了斜齿轮摩擦力和摩擦力矩的解析算法;基于时变摩擦因数模型,研究了滑动摩擦对齿面啮合力和啮合效率的影响。结果表明,考虑滑动摩擦时,齿面啮合力小于法向力,齿面啮合力随转速增大而增大,随齿面粗糙度和润滑油黏度增大而减小,且在多齿啮合区影响更显著;在时变摩擦因数作用下,平均啮合效率随转速、转矩增大而增大,随齿面粗糙度增大而降低,尤其在低温润滑油黏度较大时,影响较大。  相似文献   

13.
基于平均Reynolds方程和Zhao-Maietta-Chang(ZMC)弹塑性接触模型,提出鼓形修形齿轮点接触混合润滑的计算方法。采用渐进网格加密法计算润滑特性参数,对比稳态点接触混合润滑模型的仿真结果,验证提出模型的正确性。分析齿轮传动啮入点、节点和啮出点的润滑特性,研究齿轮几何参数、工况参数对鼓形修形齿面润滑特性的影响规律。结果表明:油膜压力、微凸体接触压力和总压力在啮入点处最大,啮出点处最小;名义油膜厚度在啮出点处最大,啮入点处最小;随着模数、压力角和转速的增加,油膜压力、微凸体接触压力与总压力降低,油膜厚度增加;随着功率和鼓形修形量的增大,油膜压力、微凸体接触压力和总压力增大,油膜厚度降低。因此,增大模数、压力角、转速和减小功率、鼓形修形量可改善粗糙齿面润滑状态。  相似文献   

14.
结合摆线针轮传动中啮合点处综合曲率半径、卷吸速度、轮齿载荷随时间变化的特点,利用多重网格技术,得到了摆线针轮时变微观弹流润滑的完全数值解,分别讨论了单独粗糙峰和粗糙谷对弹流润滑的影响,并与其光滑解进行了比较。结果表明,粗糙度的存在,能较大程度影响油膜压力,但对油膜厚度影响轻微;并且粗糙峰和粗糙谷对油膜压力影响有明显的不同表现。  相似文献   

15.
基于非线性理论的齿轮机构动力学模型的建立及实验   总被引:1,自引:0,他引:1  
刘国华  李亮玉 《机械设计》2006,23(5):15-17,57
在研究分析了轮齿的变啮合刚度和轮齿间的油膜动力学性能的基础上,提出了把此油膜看成是一个质量-弹簧-阻尼系统的假设,并运用弹流理论,分析了油膜厚度和油膜等效刚度,建立了相应的动力学模型和运动微分方程。采用GEAR方法求解非线性动力学微分方程组,并通过实验验证齿侧间隙对齿轮机构动态特性的影响。  相似文献   

16.
王明凯  樊智敏 《机械传动》2020,44(6):126-133,148
为研究双渐开线齿轮传动摩擦学与动力学之间的耦合作用,根据齿轮动力学、载荷分担及弹流润滑理论,建立双渐开线齿轮传动摩擦动力学模型,研究混合弹流润滑特性与动力学之间的耦合作用。将动力学模型求解的动载荷应用于混合弹流润滑模型,求解摩擦因数等参数;将摩擦因数重新代入动力学模型,研究双渐开线齿轮动力学行为。结果表明,考虑摩擦学与动力学耦合作用对齿轮动力学行为影响较显著;低转速时,动载荷作用下摩擦因数及油膜厚度分布与稳态载荷作用时近似,转速增大时,摩擦因数及油膜厚度分布波动明显。  相似文献   

17.
针对齿轮系统运行过程中具有非线性动力学特性,为研究齿面摩擦因数对系统动力学的影响,建立了一种考虑齿侧间隙,齿面摩擦力和时变啮合刚度等因素的三齿轮扭转振动模型。分析了布局参数对齿面摩擦力和时变啮合刚度的影响,研究了不同摩擦因数对系统动态响应的影响以及有无摩擦因数对系统混沌运动的影响,通过幅频曲线研究了系统的跳跃滞后现象和齿轮碰撞运动并分析了摩擦因数对它们的影响。结果表明,随着摩擦因数的变化,系统表现出同周期运动并存、不同周期并存和混沌等动力学现象,摩擦能导致混沌运动和跳跃现象提前并加大齿轮之间的碰撞运动。该结果可为汇流传动齿轮系统的非线性动态设计提供准确合理的理论参考。  相似文献   

18.
根据弹流润滑理论与渐开线直齿轮齿廓啮合特点,建立非牛顿流体直齿轮副弹流润滑模型,采用数值方法求解不同工况条件对油膜压力、油膜厚度分布及啮合周期内摩擦因数的影响。研究表明,转速、输入转矩及润滑油粘度产生变化,均会影响油膜压力及膜厚分布,最终导致啮合周期内摩擦因数发生变化,且摩擦因数在靠近节点处达到最小值。  相似文献   

19.
直齿轮传动非牛顿流体瞬态弹流润滑研究   总被引:4,自引:0,他引:4  
卢立新  蔡莹 《润滑与密封》2005,(6):36-38,41
综合考虑润滑流体的非牛顿特性以及齿轮传动的瞬态效应,采用Bair-Winer粘塑模型推导了非牛顿流体雷诺方程,建立了非牛顿流体瞬态弹流润滑模型;进行直齿轮传动非牛顿流体弹流润滑数值分析,获得了齿轮传动沿啮合线的油膜压力、油膜形状以及摩擦因数的分布。结果表明:在非牛顿流体工况下,油膜厚度、油膜压力以及轮齿表面摩擦因数均有所降低,因此在齿轮弹流润滑研究中应考虑流体的非牛顿特性的影响。  相似文献   

20.
柴油机曲轴主轴承润滑性能分析   总被引:3,自引:1,他引:2  
基于弹性流体动力润滑(EHD)和轴承动力学理论,计及轴瓦、轴颈的粗糙度及曲轴和轴承座变形的影响,建立四缸内燃机主轴承的润滑分析模型。在此模型的基础上,分析轴承间隙、供油压力和轴承宽度等参数对内燃机主轴承润滑性能的影响。结果表明:第4轴承的最小油膜厚度较小,最大油膜压力较大,摩擦功耗最大,即具有较差的摩擦性能;为减少摩擦功耗,应在保证可靠的润滑性能的前提下,适当地增大轴承间隙、减小供油压力和减小轴承宽度。对第4主轴承进行优化分析,优化后的最小油膜厚度增大,最大油膜压力减小,摩擦功耗有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号