首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用混合有限元-统计能量分析(FE-SEA)理论搭建了某高速列车车厢的中频声学模型,考虑了内饰件的声学性能,从而研究整备车厢的车内噪声.提出多物理场耦合激励下的高速列车车内结构辐射噪声计算方案,分别采用快速多极边界元、刚性多体动力学和大涡模拟结合Ffowcs Williams-Hawkings(FW-H)声类比法提取了350km/h下的轮轨噪声、二系悬挂力和空气动力噪声,将这些激励源耦合后作用在列车混合模型上,计算了200~1 600Hz内的车内噪声.在相同车速下,选取车内中心距离地板1.2m高度处的仿真与试验声压级进行对比,结果显示2条曲线的变化趋势基本一致,声压级总值相差2.7dB,误差符合工程要求,验证了列车中频声学耦合模型及多物理场耦合激励的精度.  相似文献   

2.
采用能量有限元分析(EFEA)并引入车体隔声效应建立高速列车(HST)车厢结构和声腔模型,综合考虑机械激励和声激励源,预测分析车内全频噪声. 通过试验及仿真计算获取模型结构和声腔参数;采用多体动力学仿真、声学有限元法和非线性声学方法求解得到车外激励源,包括轮轨力、二系悬挂力、轮轨噪声和气动噪声. 通过验证激励源频谱结果的声压级(SPL)峰值频率保证激励源的准确性. 将模型参数和激励源施加到车内噪声EFEA模型上,并预测不同区域的车内噪声。将车内声腔各区域的预测与搭载试验车内噪声SPL进行对比,结果显示,仿真与试验车内噪声声压级在分析频段内的变化趋势基本一致,声压级总值(OASPL)误差小于3 dB(A). 由此验证了提出的方法对于HST车内全频噪声仿真预测的有效性和准确性.  相似文献   

3.
以CRH3型高速列车的标准车轮为例,采用声学边界元法计算了单个车轮在单位垂向力下的辐射噪声。介绍了一种新型辐板屏蔽式阻尼车轮,并对比分析了阻尼车轮和标准车轮的声辐射特性。考虑了较为完整的边界条件,首先基于多体动力学提取了350km/h下列车的轮轨激励,然后建立了四轮对的声振耦合模型,用于研究轮对噪声在车厢表面形成的声学分布。结果表明:单个车轮的辐射声场随角度呈瓣状变化,随距离逐层递减,具有明显的指向性,踏面和辐板对辐射噪声的贡献量最大;相对于标准车轮,阻尼车轮的辐射声功率明显降低,尤其在峰值频率处;四轮对的辐射声场是多个车轮噪声源经叠加和干涉作用后的复合声场,主要作用在车厢端部,且保留了基本的指向特征;对比观察点处的声学响应发现,标准轮对的噪声峰值均在110dB以下,而阻尼轮对的声压级总值下降约15dB,降噪效果明显。  相似文献   

4.
建立某型工程车辆驾驶室的结构有限元模型、空腔声学有限元模型。对驾驶室结构和室内空腔声场进行模态分析,得到结构振动特性和声学特性。计算分析驾驶室声一结构耦合模型在特定频率激励下的噪声分布情况,同时考虑吸声材料对驾驶员耳旁声压级值的影响,总结出在新车型开发阶段进行车内噪声预测和控制研究的有效方法。  相似文献   

5.
高速列车通过隧道或者在隧道交会时,产生复杂的压缩波和膨胀波,由于车体不能完全密封,导致车内压力发生跟随性变化,引起乘客舒适度降低的问题。通过建立高速列车车体内外流场的数值分析模型,在计算车体外表面压力波的基础上,以等效泄漏孔作为车体内外压力传递的接口研究车内压力的变化规律,提出了高速列车动态气密性指数计算方法。首先,对比等效泄漏孔建模中长细比及位置对车内压力的影响,确定了包含等效泄漏孔的车体内外流场准确的数值模型;然后,建立了高速列车-隧道CFD(computational fluid dynamics)模型,计算了高速列车隧道交会流场,获得了列车在隧道交会工况下车体外表面压力波;最后,将车体外表面压力波作为车体内外流场模型的激励,计算了车内压力变化,拟合数据后分析了车内压力变化率和动态气密指数,并与已有文献的实测数据进行了对比验证。结果表明:等效泄漏孔的建模应采用长细比大于1∶4的计算结果更合理;单节车气密性数值模型中泄漏孔的位置对车内压力影响不大;列车隧道会车工况下车体外流场大多处于负压状态,只有头车测点出现正压。所提的车体动态气密性分析模型能较好地模拟车内压力波动,在7.05 c...  相似文献   

6.
利用某国产轿车的声固耦合有限元模型对车内低频噪声进行了预测、分析和优化,并通过实车道路试验得到动力总成悬置激励、路面通过悬架传递到车身的激励以及驾驶员耳旁声压级响应。将测得的激励施加于模型中的相应位置进行频率响应分析,并预测车内低频噪声。从预测结果与试验结果的对比可以看出,二者具有较好的一致性,证明了轿车声固耦合模型的有效性。分析了驾驶员耳旁声压级对车身结构各壁板的灵敏度,根据灵敏度分析结果,应用涂贴阻尼层的方法对车内噪声进行控制,通过对阻尼层的试验优化设计,优化了涂贴阻尼层的密度及厚度。优化后车内噪声峰值降低了1.13dB(A),总声压级降低了0.62dB(A),阻尼层的总质量降低了1.935kg。  相似文献   

7.
首先建立了壳体结构和声场的有限元模型,用声场-结构耦合的模态综合法分析了车内噪声的分布,并计算了车辆在几种工况下的声压级,与模型实验结果趋势一致.因此,声场-结构耦合的模态综合法可以较有效地预估车内的噪声,可以在设计阶段优化车辆壳体结构,从而使车内噪声尽可能降到最低限度.  相似文献   

8.
车辆冷却风扇模块气动噪声数值研究   总被引:1,自引:0,他引:1  
采用计算流体力学(CFD)/计算气动声学(CAA)混合方法对冷却风扇模块气动噪声进行数值研究。考虑风架对空气流动的影响,在定常计算的基础上采用动力Smagorinsky亚格子应力模型的大涡模拟(LES)进行非定常计算捕捉声源信息。基于叶片噪声的Lowson公式,采用声学边界元方法(BEM)对冷却风扇模块气动噪声进行预测。最后,将计算结果和试验结果进行对比。结果表明:冷却风扇模块声场轴向偶极特征明显;接收点处声压级随流量的增加而增加;出风口声压级较进风口大;离散噪声是冷却风扇模块气动噪声的主要成分;宽频噪声分布均匀且相对较小。计算结果和试验结果吻合较好,验证了CFD/CAA混合方法的预测作用,可为声优化提供参考。  相似文献   

9.
为研究中频域的结构噪声,采用有限元-统计能量分析(FE-SEA)混合法对汽车板件的隔声性能进行了研究,该方法具备适用于低频域的有限元或边界元法和适用于高频域的统计能量分析的优点.结合混合法理论,建立克莱斯勒Viper跑车镁合金压铸前围板的混合模型,验证该方法应用于汽车车身薄壁件中低频隔声量计算的可行性.对混合模型的入射侧施加混响声场(DAF)作为声激励,在透射侧施加半自由声场(SIF)作为功率接收器,由数值计算结果得到前围板中低频率范围内的隔声量曲线,与试验结果对比,表明两者结果基本吻合,从而很好地证明了有限元-统计能量混合法用于解决本模型的中频声学问题的可行性.介绍了区域声学包装法,即在隔声量曲线低谷频率范围(100~500 Hz)内,将简易声学包装施加到结构表面振动速度较大处,可以有效地优化前围板的总体隔声性能.  相似文献   

10.
针对工程应用中调节阀普遍出现的空化以及由其产生的噪声问题,提出基于流声场耦合法的调节阀空化噪声数值预测方法,首先选择大涡模拟和空化模型对调节阀进行瞬态流场计算,然后联合声学边界元法利用流场信息计算噪声场特征,分别数值计算一种轴流式调节阀在空化和无空化工况时的噪声。结果表明:监测点处的声压级频率响应曲线整体趋势基本一致,计算结果符合实际规律;空化工况时的声压级频率响应曲线具有较多的峰值点,而无空化则较为平稳,可作为判断调节阀是否产生空化的依据;数值计算得到的监测点处总声压级与理论预测计算的相对误差低于7.1%,证明了数值计算的准确可行性。  相似文献   

11.
在磁致伸缩和麦克斯韦方程相关理论研究的基础上,采用有限元方法利用有限元软件COMSOL,在瞬态电磁场耦合、结构力场耦合以及声场耦合基础上建立了一台三相串联铁芯电抗器模型,针对三相串联铁芯电抗器在工频工作状态下的磁场分布、铁芯磁致伸缩位移、铁饼间的麦克斯韦力位移和声压级进行分析研究。根据仿真中电抗器的瞬态磁场分布,得到电抗器内部磁通密度分布、振动位移分布,进而得到声场分布。实验表明,多物理场仿真得到的结果与实测数据基本一致,证实运用多物理场耦合对噪声进行预估是一种有效的方法。  相似文献   

12.
为了抑制空调系统对高速列车车内噪声的影响,在风道内设置阻抗复合消声器,量化分析传声特性是高速列车低噪声设计的重要内容. 基于有限元-统计能量分析(FE-SEA)混合法建立某高速列车风道消声器传声特性分析模型,对80~3 150 Hz频率区段的风道消声器传声特性进行预测计算. 采用声学有限元法建立风道消声器声学模态分析模型,针对传递损失的峰值和谷值所在的频率区段,计算风道消声器声学模态,解释传递损失峰/谷值的成因. 从提升声学性能的角度,结合工程实际情况,对风道消声器进行设计方案优选. 结果表明:风道消声器具有良好的降噪作用,声学模态振型特性是传递损失峰/谷值的成因;消声器阻性特性对传递损失的影响最大,通过吸声选材优选可以最大提高传递损失18.0 dB;消声器抗性特性影响相对较小,通过吸声包数量和位置的优选可以最大提高传递损失4.1 dB;考虑阻抗复合优选方案,最高可以提高风道消声器传递损失18.6 dB.  相似文献   

13.
某试验车型在怠速和N档全油门工况下排气口噪声很明显,对车内噪声影响很大,怠速排气口和车内55 Hz对车内整体声压级贡献较大.应用比利时LMS公司的Test.Lab对上述问题进行了实验测试分析,通过更换不同状态的样件进行对比测试.结果表明:N档全油门加速行驶中,排气口噪声2阶对车内噪声2阶贡献很大,降低排气口噪声2阶声压级对车内噪声改善很明显.  相似文献   

14.
针对航空发动机压气机转子叶片结构声振动问题,建立了薄壁板有限元简化模型,基于耦合有限元/边界元法对薄壁板在行波加载下随机声激励振动响应进行了仿真计算,得到了在不同声压级下的应力响应结果。改变声载荷激励方向,分别对薄壁板施加单音噪声激励和宽频随机噪声激励,通过仿真计算得到了不同角度随机声激励下薄壁板振动响应频响曲线。对比分析发现,薄壁板模态振型与噪声加载方向是引起薄壁板共振的重要因素。  相似文献   

15.
某SUV型汽车后视镜气动噪声数值仿真   总被引:3,自引:0,他引:3  
为有效降低汽车气动噪声,依据声类比思想将气动噪声计算分成流场和声场计算,采用全域与子域分步计算流场和ACTRAN计算声场相结合的方法对某SUV型汽车后视镜的3种方案的气动噪声进行数值仿真,得到车外流场与车内外的声场及声压级频谱曲线,分析流场云图和声压级频谱曲线的变化规律.结果表明:方案III的后视镜因边缘凸起改善了侧窗外流场湍流脉动压力、漩涡和声源位置分布,减少了后视镜通过侧窗传播到车内的噪声.数值仿真结果与实验测试结果吻合较好,验证了方法的正确性.该方法可优化车内声场的分布,提高司乘人员舒适性.  相似文献   

16.
为可靠地评估列车运行的安全性与平稳性,基于多体动力学理论和概率统计方法,对随机轨道不平顺激励作用下列车加速度响应最大值的分布规律进行分析.采用多体动力学软件Simpack建立列车轨道耦合模型,通过三角级数法模拟得到轨道不平顺作为随机输入激励,基于Monte-Carlo方法计算得到列车在行驶过程中加速度响应的样本序列.将...  相似文献   

17.
LF520车室声腔模态分析   总被引:2,自引:0,他引:2  
采用Hypermesh软件建立了某车型的室内声场有限元模型,用SYSNOISE软件对该有限元模型进行自由模态分析,得到声场的各阶模态频率和振型,将声模态分析结果与汽车内外部的激励源频率特性进行对比,为改善车内声学特性,对车内噪声预测提供了参考。  相似文献   

18.
为了研究简支箱梁结构噪声,以32 m简支箱梁为研究对象进行车桥耦合动力分析,求解轨道不平顺作用下的竖向轮轨力。以竖向轮轨力作为激励加载在简支箱梁的声场分析模型中,以简支箱梁的动力响应结果作为边界条件,利用边界元和有限元相结合的方法求解声场内声压级的频率分布特性和传播规律。主要研究了行车速度和板件厚度等因素对简支箱梁结构噪声的影响。研究表明,桥梁结构噪声的频段主要在100 Hz以下,顶板上方的噪声声压级最大;结构噪声在传播过程中存在明显的衰减特性,噪声声压级随传播距离增大而减小;车辆运行速度越大,结构噪声声压越大;箱梁刚度和顶板厚度越大噪声声压级越小;相同列车荷载作用下,单箱双室箱梁辐射出的结构噪声声压级比单箱单室箱梁更小。  相似文献   

19.
高速列车进出隧道时会产生一系列空气动力学效应,引起噪声及车厢内压力的变化.实验测试是研究这一问题的有效方法之一.利用高速列车空气动力学模型实验系统对高速列车在进入隧道过程中瞬变压力的传播规律进行研究,并分析了列车速度以及阻塞比对测试结果的影响,得出的结论对以后的研究具有一定的参考和借鉴.  相似文献   

20.
高速列车进出隧道时会产生一系列空气动力学效应,引起噪声及车厢内压力的变化.实验测试是研究这一问题的有效方法之一.利用高速列车空气动力学模型实验系统对高速列车在进入隧道过程中瞬变压力的传播规律进行研究,并分析了列车速度以及阻塞比对测试结果的影响,得出的结论对以后的研究具有一定的参考和借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号