首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了一种基于群体智能的电梯交通流分析方法,该算法将电梯交通流模式投影于二维平面上,然后依据群体智能聚类,实现电梯交通流的自组织聚类分析.为了提高群体智能聚类算法的运行效率,采用了主成分分析方法改善模式投影时的随机性,同时在聚类过程中引入密度引导策略减小分类错误率和运行时间.仿真结果表明,群体智能聚类算法能对电梯交通流数据进行有效的聚类分析,具有较好的自组织聚类特性.  相似文献   

2.
基于信息熵的蚁群聚类算法的改进   总被引:8,自引:0,他引:8  
聚类分析是数据挖掘领域中的一个重要研究课题.在LF算法的基础上,利用信息熵减少参数设置,并通过半径递增、短期记忆、强行放下、合并聚类等策略,提高聚类性能、仿真实验表明:新算法能取得较好的聚类结果,对于处理混合属性数据集尤其是类属性数据集聚类问题相当有效.  相似文献   

3.
聚类分析是遥感图像非监督分类的有效方法,蚁群算法具有离散性和并行性的特点,蚂蚁觅食行为、蚂蚁堆积尸体行为和基于蚂蚁自我聚集行为的聚类算法是目前研究较为广泛的3种基于蚂蚁的仿生聚类算法.为验证上述3种算法的有效性,在对这3种聚类算法进行研究的基础上,针对遥感图像进行了聚类实验.实验结果表明,基于蚂蚁的聚类方法对图像的聚类分析是有效的,较传统的k均值和模糊C均值算法有一定优越性.  相似文献   

4.
基于多蚁型的蚁群聚类算法   总被引:1,自引:0,他引:1  
本文提出了一种多蚁型的蚁群模型和在此模型上的一个具有移动空间的蚁群聚类算法。每个类簇都带有一个移动空间,使同类的蚂蚁紧密地聚在一起。移动空间为每个类簇选出一个代表蚂蚁用来长距离的类簇移动。代表蚂蚁通过连接将类簇中不相似的大量数据移动到与其相似的代表蚂蚁处,减少了蚂蚁的搜索时间,提高聚类性能。针对UCI数据集进行实验,结果表明新算法提高了聚类效果。  相似文献   

5.
基于粒子群优化的模糊聚类算法   总被引:9,自引:0,他引:9  
针对模糊C均值聚类算法具有容易陷入局部极小值,对初始值和噪声数据敏感的缺点,提出了基于粒子群优化算法的改进模糊聚类算法(PSFC).该算法引入了粒子群优化算法强大的全局寻优能力,并结合了模糊C-均值聚类算法的特点.实验结果表明,该算法是一种实用的、速度更快、效率更高的改进聚类算法,具有很好的全局收敛性和较快的收敛速度.  相似文献   

6.
研究了智能答疑系统中的问题分类.根据智能答疑系统的特点,将蚁群聚类算法引入智能答疑系统中,并对该算法在智能答疑系统中的应用进行了分析和测试.该算法能有效的对智能答疑系统范例库中的问题进行聚类,进一步提高了答疑系统检索的效率和智能性.  相似文献   

7.
针对传统聚类算法在对复杂密集型数据集聚类时不能取得较好聚类结果的问题,利用进化聚类算法对复杂密集型数据集进行聚类,提出一种基于蚁群系统的聚类算法(clustering algorithm based on ant colony system,CAACS),利用蚂蚁在行进路径中释放信息素且追求浓信息素的原理来实现蚂蚁的随机搜索,并引入近邻函数值的概念来确定样本数据之间的相似性,通过蚂蚁在行走过程中不断建立样本数据之间的最相似连接来形成各个子连通图,各个子连通图中的样本数据构成一个类。实验采用随机产生的不规则数据集以及一系列合成的数据集将CAACS算法与DBSCAN算法(density-based spatial clustering of application with noise)及面向非规则非致密空间分布数据的蚁群聚类方法进行比较。实验结果表明CAACS算法对复杂密集型数据集能达到较好的聚类结果。  相似文献   

8.
随着计算机网络特别是因特网技术的发展,网络安全已变得越来越重要.入侵检测作为一种主动防御的安全技术正成为实现网络安全的另一个重要技术手段和第二道防御措施.分析了基于聚类分析的入侵检测技术,在对入侵检测和数据挖掘理论分析基础上,提出基于蚁群优化聚类的入侵检测算法,详细阐述了算法的基本原理和过程,计算机仿真实验结果表明,该算法能够检测新型未知入侵,并能有效提高入侵检测的检测率、降低误检率,并可用于实际环境下数据集的入侵检测.  相似文献   

9.
基于云计算平台的数据挖掘主要目的是为了更好地处理海量数据,挖掘有用的信息.云计算为海量数据挖掘提供了强大的数据收集、存储和计算能力,简述了云计算技术及其研究现状,详细介绍了基于云计算平台的聚类算法,总结在云计算平台研究聚类所遇到的新问题,对基于云计算平台的聚类发展趋势进行展望.  相似文献   

10.
智能优化算法主要分为4类:仿自然优化算法、进化算法、仿植物生长算法和群体智能优化算法,其中群体智能优化算法是最为重要的一类算法.智能优化算法与图像处理、故障检测、路径规划、粒子滤波、特征选择、生产调度、入侵检测、支持向量机、无线传感器、神经网络等技术领域交叉融合,应用更加广泛.以蝙蝠算法、果蝇优化算法、鲸鱼优化算法、樽...  相似文献   

11.
在研究了基本蚁群聚类模型、信息熵以及几个经典的聚类分析算法的基础上,针对传统K—means算法的不足,首先提出了一种基于信息素的k-means改进算法,该算法以基于信息素的转移概率为判断标准来进行聚类,减少了算法的参数个数,加快了聚类的进程.在深入研究了基于信息熵的LF改进算法的基础上,提出了一种蚁群聚类组合算法策略.  相似文献   

12.
基于群集智能的算法研究,近年来受到了广泛的关注.文中重点讨论了群集智能的两种算法,蚁群智能与微粒群智能,并分别阐述了它们的原理、基本算法及其一些改进算法.最后讨论了群集智能算法的一些应用实例以及它们的应用领域和未来的研究方向.  相似文献   

13.
群智能是由自然或人造的分散自组织系统所表现出来的集体智能.群智能包含一组简单的个体,其中个体与个体、个体与环境之间存在局部交互行为.虽然个体遵循非常简单的规则,但是微观的交互最终还是导致了宏观的智能行为.在本文中,我们对典型群智能方法的起源、发展、理论、技术、应用等做了深入的研究,包括了蚁群优化、粒子群优化、人工蜂群、细菌觅食优化、萤火虫共五类算法.文末提出群智能发展的六个方向.  相似文献   

14.
为了获得全局最优的高质量层次聚类结果,针对智能蚁群优化算法改进凝聚层次聚类算法,以获得高质量的层次聚类结果,提出一种新的基于蚁群优化和凝聚层次聚类的混合聚类方法.该方法使用改进的凝聚层次聚类算法和新的目标函数生成聚类的系统树图,利用内部指标评估解决方案,用智能蚁群优化算法支持的信息素反馈和信息素挥发机制控制蚁群在解决方案空间中的搜索.由于使用了元启发式优化,加快了搜索过程,避免了局部最优.在加州大学欧文分校多个数据集上的实验结果表明,新方法具备一定的可行性.  相似文献   

15.
传统的k-means算法是一种局部搜索算法,对初始化敏感,容易陷入局部极值。针对此缺点,提出一种基于k-means算法的改进的蚁群聚类算法,选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心,把正反馈、精英机制和变异算子引入到蚁群聚类。实验结果证明,算法不仅对初始数据具有弱依赖性,而且能够提高聚类的准确率,加快收敛。  相似文献   

16.
针对模糊C-均值算法(FCM)具有局部最优问题和初值敏感性的缺陷,将微粒群优化算法应用于文本模糊聚类, 提出了基于微粒群优化算法的模糊C-均值算法PFCM.该算法首先采用实数编码方式对聚类原型进行编码,利用微粒群优化算法的全局搜索性能对初始聚类原型的选取进行指导,然后利用模糊C-均值算法进行聚类.使用算法PFCM对文本集合进行聚类实验,并用目标函数值和划分系数来判断模糊划分的效果,实验结果表明,与FCM相比,该算法具有较好的全局收敛性和较好的聚类结果.  相似文献   

17.
提出了一种基于动态粒子群的聚类算法应用于图像边缘检测。由于FCM算法容易陷入局部最优,并对初始化敏感,这种算法利用粒子群较强全局寻优能力与局部寻优能力,动态确定聚类数目和中心,在此基础上又进行FCM聚类。两者有效地结合起来能搜索到有效的全局最优解。仿真实验表明,该算法应用与图像边缘检测是可行和有效的。  相似文献   

18.
Data mining is the process of data selection,ex-ploration and building models using vast data stores touncover previously unknown patterns[1].It can makethe decision-making based on the knowledge,by fore-casting the unborn development tendency and action.…  相似文献   

19.
基于聚类和分段优化的蚁群算法   总被引:2,自引:0,他引:2  
针对蚁群算法在求解大规模旅行商问题(TSP)时精度和时间方面的不足,提出了一种新的算法,该算法采用多阶段的蚁群寻优策略.算法的复杂度分析及在大规模TSP问题上的实验表明:该算法在保证获得较好解的前提下收敛速度得到了较大的改进.  相似文献   

20.
将自适应蚁群优化算法与FCM(Fuzzy C-Means)算法相结合,提出了一种模糊聚类分析的新算法.该算法通过把FCM算法中的目标函数降维,将其转化为自适应蚁群优化算法中的优化函数,通过对各个节点的路径连接数的衡量,根据蚂蚁在搜索过程中所得解的分布状况,动态调节蚂蚁的路径选择和信息量更新,从而得到目标函数的最优解.结果表明,该方法比FCM算法具有更好的收敛效果和更高的聚类准确率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号