首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forwarding state scalability is one of the critical issues that delay the multicast deployment in IP networks. With traditional multicast routing protocols, a forwarding tree is built for each multicast session, and each router is required to maintain a forwarding entry for each multicast session whose distribution tree passes through the router. This poses the multicast forwarding state scalability issue when the number of concurrent multicast sessions is very large. We first present a survey of existing work addressing this scalability issue for providing scalable IP multicast. Then we extend an existing multicast routing protocol, Multicast Extension to OSPF (MOSPF), to scale well with respect to the number of concurrent multicast sessions by introducing tunnel support. This extension aims to reduce the protocol overhead associated with MOSPF. Simulation results show that the extension can significantly reduce multicast forwarding state and computational overhead at routers without affecting the per-destination shortest path characteristic of a resulting tree or introducing extra control overhead.  相似文献   

2.
With the development of multicast service in the Internet, much attention has been drawn to multicast congestion control and analysis. Multicast traffic poses new challenges to the design of Internet congestion control protocols and system stability analysis. The rate control problem of feedback-based sessions on the coexistence of both unicast and multirate multicast traffic architecture networks is focused upon in this paper. First, a fairness problem is discussed in detail, and a reasonable consumption strategy is proposed. In the reasonable consumption strategy, scaling functions are adaptively adjusted based on a relationship between the session rates. Second, contraposing the case that available link capacities are changing with time for these feedback-based unicast and multicast sessions, stability analysis of a closed-loop rate control system under the modified rate mechanism is made based on Lyapunov stable theory. Finally, the simulations illustrate the effectiveness and goodness of the reasonable consumption strategy  相似文献   

3.
Many definitions of fairness for multicast networks assume that sessions are single rate, requiring that each multicast session transmits data to all of its receivers at the same rate. These definitions do not account for multirate approaches, such as layering, that permit receiving rates within a session to be chosen independently. We identify four desirable fairness properties for multicast networks, derived from properties that hold within the max-min fair allocations of unicast networks. We extend the definition of multicast max-min fairness to networks that contain multirate sessions, and show that all four fairness properties hold in a multirate max-min fair allocation, but need not hold in a single-rate max-min fair allocation. We then show that multirate max-min fair rate allocations can be achieved via intra-session coordinated joins and leaves of multicast groups. However, in the absence of coordination, the resulting max-min fair rate allocation uses link bandwidth inefficiently, and does not exhibit some of the desirable fairness properties. We evaluate this inefficiency for several layered multirate congestion control schemes, and find that, in a protocol where the sender coordinates joins, this inefficiency has minimal impact on desirable fairness properties. Our results indicate that sender-coordinated layered protocols show promise for achieving desirable fairness properties for allocations in large-scale multicast networks  相似文献   

4.
Most existing reliable multicast congestion control (RMCC) mechanisms try to emulate TCP congestion control behaviors for achieving TCP-compatibility. However, different loss recovery mechanisms employed in reliable multicast protocols, especially NAK-based retransmission and local loss recovery mechanisms, may lead to different behaviors and performance of congestion control. As a result, reliable multicast flows might be identified and treated as non-TCP-friendly by routers in the network. It is essential to understand those influences and take them into account in the development and deployment of reliable multicast services. In this paper, we study the influences comprehensively through analysis, modelling and simulations. We demonstrate that NAK-based retransmission and/or local loss recovery mechanisms are much more robust and efficient in recovering from single or multiple packet losses within a single round-trip time (RTT). For a better understanding on the impact of loss recovery on RMCC, we derive expressions for steady-state throughput of NAK-based RMCC schemes, which clearly brings out the throughput advantages of NAK-based RMCC over TCP Reno. We also show that timeout effects have little impact on shaping the performance of NAK-based RMCC schemes except for extremely high loss rates (>0.2). Finally, we use simulations to validate our findings and show that local loss recovery may further increase the throughput and deteriorate the fairness properties of NAK-based RMCC schemes. These findings and insights could provide useful recommendations for the design, testing and deployment of reliable multicast protocols and services  相似文献   

5.
基于网络控制的分层多点播送速率控制机制研究   总被引:1,自引:0,他引:1  
本文在视频分层编码及分层传输协议的基础上,将基于网络控制与接收端控制机制相结合,提出一种新的分层多点播送速率控制机制。文中给出了该机制的拥塞检测、流行度权衡和数据层增加和丢弃算法。实验结果表明,该速率控制机制通史对拥塞做也快速响应,并在较好利用宽带的基础上保证高流行度的会话流具有较好的服务质量。  相似文献   

6.
Multicast routing research efforts have mostly focused on supporting the host-group model in which multicast packets are addressed to a host (or multicast) group. Another multicast routing approach uses multi-destination addressing, where a multicast packet carries a list of the unique (unicast) addresses of all the group members. This form of routing can be accomplished using limited or no additional state beyond the existing unicast routing tables. It, therefore, scales well with the number of multicast sessions but does not scale well with the size of the multicast group and, in fact, requires the size of the multicast group to be below a certain threshold. In this paper, we envision a future scenario in which both host-group and multi-destination addressing routing approaches coexist within the Internet. We develop a dynamic routing context for this future scenario wherein a multicast session can adapt among different routing configurations depending on the number of multicast group members and how this number changes over time. We consider three routing options: (1) A single multi-destination addressed flow – suitable for small-group sessions, (2) multiple multi-destination addressed flows – suitable for medium-group sessions and (3) a single host-group addressed flow – suitable for large-group sessions. For multicast sessions that vary in group membership over time, different routing protocols may be best at different points in time. Our work is concerned with the development and evaluation of protocols that allow a multicast session to dynamically switch among these three routing options as the size of the session changes.  相似文献   

7.
The successful deployment of multicast in the Internet requires the availability of good network management solutions. Discovering multicast tree topologies is an important component of this task. Network managers can use topology information to monitor and debug potential multicast forwarding problems. In addition, the collected topology has several other uses, for example, in reliable multicast transport protocols, in multicast congestion control protocols, and in discovering network characteristics. We present a mechanism for discovering multicast tree topologies using the forwarding state in the network. We call our approach tracetree. First, we present the basic operation of tracetree. Then, we explore various issues related to its functionality (e.g., scalability, security, etc.). Next, we provide a detailed evaluation by comparing it to the currently available alternatives. Finally, we discuss a number of deployment issues. We believe that tracetree provides an efficient and scalable mechanism for discovering multicast tree topologies and therefore fills an important void in the area of multicast network management.  相似文献   

8.
This article outlines an approach for multicast congestion control based on an economic model that has been successfully applied to unicast congestion control. In this model, congestion signals are interpreted as prices and congestion-controlled sessions as utility maximizing agents. A naive extension of the unicast model fails to achieve a reasonable balance between providing the incentives necessary to promote the use of multicast and ensuring that multicast sessions do not interact too aggressively with unicast sessions. We extend the model by introducing a rational definition of multicast utility. The revised model provides a basis for multicast congestion control protocols that provide incentives to use multicast but are necessarily unfair to unicast traffic. We show, however, that the degree of unfairness can be controlled by appropriately setting a design parameter with a limiting case of strict fairness  相似文献   

9.
《IEEE network》2002,16(5):38-46
Today, the dominant paradigm for congestion control in the Internet is based on the notion of TCP friendliness. To be TCP-friendly, a source must behave in such a way as to achieve a bandwidth that is similar to the bandwidth obtained by a TCP flow that would observe the same round-trip time (RTT) and the same loss rate. However, with the success of the Internet comes the deployment of an increasing number of applications that do not use TCP as a transport protocol. These applications can often improve their own performance by not being TCP-friendly, which severely penalizes TCP flows. To design new applications to be TCP-friendly is often a difficult task. The idea of the fair queuing (FQ) paradigm as a means to improve congestion control was first introduced by Keshav (1991). While Keshav made a fundamental step toward a new paradigm for the design of congestion control protocols, he did not formalize his results so that his findings could be extended for the design of new congestion control protocols. We make this step and formally define the FQ paradigm as a paradigm for the design of new end-to-end congestion control protocols. This paradigm relies on FQ scheduling with per-flow scheduling and longest queue drop buffer management in each router. We assume only selfish and noncollaborative end users. Our main contribution is the formal statement of the congestion control problem as a whole, which enables us to demonstrate the validity of the FQ paradigm. We also demonstrate that the FQ paradigm does not adversely impact the throughput of TCP flows and explain how to apply the FQ paradigm for the design of new congestion control protocols. As a pragmatic validation of the FQ paradigm, we discuss a new multicast congestion control protocol called packet pair receiver-driven layered multicast (PLM).  相似文献   

10.
Optimized multipath network coding in lossy wireless networks   总被引:1,自引:0,他引:1  
Network coding has been a prominent approach to a series of problems that used to be considered intractable with traditional transmission paradigms. Recent work on network coding includes a substantial number of optimization based protocols, but mostly for wireline multicast networks. In this paper, we consider maximizing the benefits of network coding for unicast sessions in lossy wireless environments. We propose Optimized Multipath Network Coding (OMNC), a rate control protocol that dramatically improves the throughput of lossy wireless networks. OMNC employs multiple paths to push coded packets to the destination, and uses the broadcast MAC to deliver packets between neighboring nodes. The coding and broadcast rate is allocated to transmitters by a distributed optimization algorithm that maximizes the advantage of network coding while avoiding congestion. With extensive experiments on an emulation testbed, we find that OMNC achieves more than two-fold throughput increase on average compared to traditional best path routing, and significant improvement over existing multipath routing protocols with network coding. The performance improvement is notable not only for one unicast session, but also when multiple concurrent unicast sessions coexist in the network.  相似文献   

11.
Congestion control for IP multicast on the Internet has been one of the main issues that challenge a rapid deployment of IP multicast. In this article, we survey and discuss the most important congestion control schemes for multicast video applications on the Internet. We start with a discussion of the different elements of a multicast congestion control architecture. A congestion control scheme for multicast video possesses specific requirements for these elements. These requirements are discussed, along with the evaluation criteria for the performance of multicast video. We categorize the schemes we present into end-to-end schemes and router-supported schemes. We start with the end-to-end category and discuss several examples of both single-rate multicast applications and layered multicast applications. For the router-supported category, we first present single-rate schemes that utilize filtering of multicast packets by the routers. Next we discuss receiver-based layered schemes that rely on routers group?flow control of multicast sessions. We evaluate a number of schemes that belong to each of the two categories.  相似文献   

12.
Given their broadcast nature, satellite communications are one natural engineering choice for multicast service deployment. In this paper, the throughput performance of transmission control protocol (TCP)-like multicast congestion control is analyzed in hybrid terrestrial/satellite networks. With this objective, an analytical framework based on Markov chains is introduced. The major advantage of the proposed analytical model is its scalability in that the number of states of the Markov chain modeling the system is independent of the number of receivers in the multicast session. This is a very important feature as simulation is unfeasible for large numbers of receivers. The framework is used to evaluate the impact of the long propagation delays, high bit-error rates, and channel asymmetry characterizing hybrid terrestrial/satellite communications. The performance results show that in certain cases, it is more convenient to divide the receivers in an appropriate number of groups and establish a different multicast session toward each of the above groups. Also, the convenience of an acknowledgment (ACK) flow reconstructor is shown.  相似文献   

13.
We consider the problem of congestion control in networks which support both multirate multicast sessions and unicast sessions. We present a decentralized algorithm which enables the different rate-adaptive receivers in different multicast sessions to adjust their rates to satisfy some fairness criterion. A one-bit ECN marking strategy to be used at the nodes is also proposed. The congestion-control mechanism does not require any per-flow state information for unicast flows at the nodes. At junctions nodes of each multicast tree, some state information about the rates along the branches at the node may be required. The congestion-control mechanism takes into account the diverse user requirements when different receivers within a multicast session have different utility functions, but does not require the network to have any knowledge about the receiver utility functions.  相似文献   

14.
FLID-DL: congestion control for layered multicast   总被引:8,自引:0,他引:8  
We describe fair layered increase/decrease with dynamic layering (FLID-DL): a new multirate congestion control algorithm for layered multicast sessions. FLID-DL generalizes the receiver-driven layered congestion control protocol (RLC) introduced by Vicisano et al. (Proc. IEEE INFOCOM, San Francisco, CA, , p.996-1003, Mar. 1998)ameliorating the problems associated with large Internet group management protocol (IGMP) leave latencies and abrupt rate increases. Like RLC, FLID-DL, is a scalable, receiver-driven congestion control mechanism in which receivers add layers at sender-initiated synchronization points and leave layers when they experience congestion. FLID-DL congestion control coexists with transmission control protocol (TCP) flows as well as other FLID-DL sessions and supports general rates on the different multicast layers. We demonstrate via simulations that our congestion control scheme exhibits better fairness properties and provides better throughput than previous methods. A key contribution that enables FLID-DL and may be useful elsewhere is dynamic layering (DL), which mitigates the negative impact of long IGMP leave latencies and eliminates the need for probe intervals present in RLC. We use DL to respond to congestion much faster than IGMP leave operations, which have proven to be a bottleneck in practice for prior work.  相似文献   

15.
The Mulitplicative Increase Multiplicative Decrease (MIMD) congestion control algorithm in the form of Scalable TCP has been proposed for high speed networks. We study fairness among sessions sharing a common bottleneck link, where one or more sessions use the MIMD algorithm. Losses, or congestion signals, occur when the capacity is reached but could also be initiated before that. Both synchronous as well as asynchronous losses are considered. In the asynchronous case, only one session suffers a loss at a loss instant. Two models are then considered to determine which source looses a packet: a rate dependent model in which the packet loss probability of a session is proportional to its rate at the congestion instant, and the independent loss rate model. We first study how two MIMD sessions share the capacity in the presence of general combinations of synchronous and asynchronous losses. We show that, in the presence of rate dependent losses, the capacity is fairly shared whereas rate independent losses provide high unfairness. We then study inter protocol fairness: how the capacity is shared in the presence of synchronous losses among sessions some of which use Additive Increase Multiplicative Decrease (AIMD) protocols whereas the others use MIMD protocols.  相似文献   

16.
In the ATM Forum activities, considerable efforts have focused on the congestion control of point-to-point available bit rate (ABR) service. We present a novel approach that extends existing point-to-point (unicast) congestion control protocols to a point-to-multipoint (multicast) environment. In particular, we establish a unified framework to derive a multicast congestion control protocol for an ABR service from a given rate-based unicast protocol. We generalize a known necessary and sufficient condition on the max-min fairness of unicast rate allocation for a multicast service. Using this condition, we show that the resulting multicast protocol derived using our framework preserves the fairness characteristics of the underlying unicast protocol. The practical significance of our approach is illustrated by extending a standard congestion control mechanism for an ABR service to a multicast environment. The performance of the resulting multicast protocol is examined using benchmark network configurations suggested by the traffic management subworking group at the ATM Forum, and simulation results are presented to substantiate our claims  相似文献   

17.
Satellites are expected to have an important role in providing the Internet protocol (IP) multicast service to complementing next-generation terrestrial networks. In this paper, we focus on the deployment of IP multicast over the next generation of digital video broadcasting-based geosynchronous earth orbit satellites supporting multiple spot beams and on-board switching technologies. We propose a new encapsulation scheme optimized for IP multicast, which has two distinct modes enabling two alternative on-board switching approaches: the self-switching and the label-switching. We also detail a set of mechanisms and protocols for ground stations, as well as for the on-board processor to allow an efficient multicast forwarding in this type of environment, while reducing the load of control and data messages in the satellite segment, and building efficient multicast delivery trees reaching only the spot beams containing at least one member of the corresponding multicast session. To integrate satellite links in the terrestrial Internet, we present satellite multicast adaptation protocol (SMAP), a protocol which is implemented in satellite stations to process incoming protocol independent multicast-sparse mode (PIM-SM) messages sent by terrestrial nodes to the satellite system. SMAP helps to update the tables required for the mapping between IP packets and MPEG-2 data segments, their switching on board the satellite, and their filtering at the satellite receivers.  相似文献   

18.
Congestion control is a major requirement for multicast to be deployed in the current Internet. Due to the complexity and conflicting tradeoffs, the design and testing of multicast congestion control protocols is difficult. In this paper, we present a novel framework for systematic testing of multicast congestion control protocols. In our framework, we first design an appropriate model for the studied protocols based on the protocols specifications and correctness conditions, and then we develop an automated search engine to generate all possible error scenarios and filter these errors to come up with a selected set of scenarios that we evaluate in more detailed simulations. Our methodology helps in identifying the potential problems of the studied protocols and points to possible improvements. We hope that this will provide a valuable tool to expedite the development and standardization of such protocols.  相似文献   

19.
A multicast congestion control scheme is an interesting feature to control group communication applications such as teleconferencing tools and information dissemination services. This paper addresses a comparison between multiple unicast and multicast traffic congestion control for Carrier Ethernet. In this work, we proposed to study the quantized congestion notification (QCN), which is a layer 2 congestion control scheme, in the case of multicast traffic and multiple unicast traffic. Indeed, the QCN has recently been standardized as the IEEE 802.1Qau Ethernet Congestion Notification standard. This scheme is evaluated through simulation experiments, which are implemented by the OMNeT++ framework. This paper evaluates the reaction point start time congestion detection, feedback rate, loss rate, stability, fairness and scalability performance of the QCN for multicast traffic transmission and multiple unicast traffic transmission. This paper also draws a parallel between QCN for multicast traffic transmission and that for multiple unicast traffic transmission. Despite the benefit of integrating the multicast traffic, results show that performance could degrade when the network scales up. The evaluation results also show that it is probable that the feedback implosion problem caused by the bottlenecks could be solved if we choose to set the queue parameter Qeq threshold value at a high value, 75% of the queue capacity for instance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
熊乃学  谭连生  杨燕 《通信学报》2004,25(11):142-150
本文针对计算机高速互联网中多播流的速率调节问题,在单点对多点的多播流量模型基础上,提出了一种由发送方驱动的单速率多播拥塞控制器的设计方法。并且运用现代控制理论和方法,讨论如何利用基于多播的单速率拥塞控制方法来对多播发送节点的发送速率进行调节,从而使得发送节点的发送速率趋于稳定。对所提出的拥塞控制方案,本文进行了分类仿真,仿真结果显示,控制方案使网络性能表现良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号