共查询到20条相似文献,搜索用时 15 毫秒
1.
Gonzalez A Cordomí A Caltabiano G Pardo L 《Chembiochem : a European journal of chemical biology》2012,13(10):1393-1399
Comparison of the crystal structures of G protein-coupled receptors (GPCRs) revealed backbone irregularities in the majority of the transmembrane (TM) helices. Among these, wide (π bulge) and tight (3(10)) helical turns on TM2 and TM5 deserve special attention because of their proximity to the ligand binding site. These irregularities are related to residue insertion or deletion (reflected by inclusion of gaps in sequence alignments) accumulated during the evolution of these two helices. These findings have direct implications for the sequence alignments, phylogeny reconstruction, and homology modeling of class A GPCRs. 相似文献
2.
G protein-coupled receptors (GPCRs) form a large protein family that plays an important role in many physiological and pathophysiological processes. However, the central role that the biogenic amine binding GPCRs and their ligands play in cell signaling poses a risk in new drug candidates that reveal side affinities towards these receptor sites. These candidates have the potential to interfere with the physiological signaling processes and to cause undesired effects in preclinical or clinical studies. Here, we present 3D cross-chemotype pharmacophore models for three biogenic amine antitargets: the alpha(1A) adrenergic, the 5-HT(2A) serotonin, and the D2 dopamine receptors. These pharmacophores describe the key chemical features present within these biogenic amine antagonists and rationalize the biogenic amine side affinities found for numerous new drug candidates. First applications of the alpha(1A) adrenergic receptor model reveal that these in silico tools can be used to guide the chemical optimization towards development candidates with fewer alpha(1A)-mediated side effects (for example, orthostatic hypotension) and, thus, with an improved clinical safety profile. 相似文献
3.
Zou C Kumaran S Markovic S Walser R Zerbe O 《Chembiochem : a European journal of chemical biology》2008,9(14):2276-2284
Binding of peptide hormones to G protein-coupled receptors is believed to be mediated through formation of contacts of the ligands with residues of the extracellular loops of family 1 GPCRs. Here we have investigated whether additional binding sites exist within the N-terminal domain, as studied in the form of binding of peptides from the neuropeptide Y (NPY) family to the N terminus of the Y4 receptor (N-Y4). The N-terminal domain of the Y4 receptor has been expressed in isotopically enriched form and studied by solution NMR spectroscopy. The peptide is unstructured in solution, whereas a micelle-associated helical segment is formed in the presence of dodecylphosphocholine (DPC) or sodium dodecylsulfate (SDS). As measured by surface plasmon resonance (SPR) spectroscopy, N-Y4 binds with approximately 50 microM affinity to the pancreatic polypeptide (PP), a high-affinity ligand to the Y4 receptor, whereas binding to neuropeptide Y (NPY) and peptide YY (PYY) is much weaker. Residues critical for binding in PP and in N-Y4 have been identified by site-directed mutagenesis. The data indicate that electrostatic interactions dominate and that this interaction is mediated by acidic ligand and basic receptor residues. Residues of N-Y4 are likely to contribute to the binding of PP, and in addition might possibly also help to transfer the hormone from the membrane-bound state into the receptor binding pocket. 相似文献
4.
Domínguez M Alvarez R Pérez M Palczewski K de Lera AR 《Chembiochem : a European journal of chemical biology》2006,7(11):1815-1825
Artificial visual pigment formation from ring-demethylated retinals was studied in an effort to understand the effect that methyl groups on the chromophore cyclohexenyl ring have on the visual cycle. The stereoselective synthesis of the 11-cis-ring-demethylated analogues involves thallium-accelerated Suzuki cross-coupling reactions and highly stereocontrolled Wittig reactions to form key bonds. Only 11-cis-1,1,5-trisdemethylretinal (2) failed to form an artificial pigment, whilst variable pigment-formation yields were determined for the remaining analogues, increasing with the number (and location) of the chromophore hydrophobic ring methyl groups. Our results with the monodemethylated analogues 11-cis-5-demethylretinal (4) and 11-cis-1-demethylretinal (5) show that the C1-2-CH(3) groups are more important for pigment formation than the C5-CH(3) substituent. This is reflected in the absorption maxima of the artificial pigments, with values closer to that of native rhodopsin for 4. Docking studies based on a rhodopsin crystal structure, however, predict a lower pigment stability for 4 than for 5. Gas-phase DFT (B3LYP/6-31G*) computations of the free-ligand geometries, conformational searches about the C6--C7 bond, and docking studies revealed that, although the conformation of bound 5 is close to that of the native chromophore, the ligand needs to overcome the energy cost of shifting the unbound favored 6-s-trans conformation to the bound 6-s-cis form. In addition, the presence of an extra methyl group at C18 (11-cis-18-methylretinal, 7) is tolerated well and adds further stability to the complex, most probably due to increased hydrophobic interactions. 相似文献
5.
The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules 总被引:1,自引:0,他引:1
Battistutta R Mazzorana M Cendron L Bortolato A Sarno S Kazimierczuk Z Zanotti G Moro S Pinna LA 《Chembiochem : a European journal of chemical biology》2007,8(15):1804-1809
CK2 is a highly pleiotropic Ser/Thr protein kinase that is able to promote cell survival and enhance the tumour phenotype under specific circumstances. We have determined the crystal structure of three new complexes with tetrabromobenzimidazole derivatives that display K(i) values between 0.15 and 0.30 microM. A comparative analysis of these data with those of four other inhibitors of the same family revealed the presence of some highly conserved water molecules in the ATP-binding site. These waters reside near Lys68, in an area with a positive electrostatic potential that is able to attract and orient negatively charged ligands. The presence of this positive region and two unique bulky residues that are typical of CK2, Ile66 and Ile174, play a critical role in determining the ligand orientation and binding selectivity. 相似文献
6.
Ishiguro M 《Chembiochem : a European journal of chemical biology》2004,5(9):1210-1219
The binding site in G protein-coupled cationic biogenic amine receptors is formed in the cleft of the seven transmembrane segments. Upon binding the ligand, the receptors are activated or inactivated through the conformational changes of the transmembrane segments. G protein-coupled receptors bind four functionally distinct ligands; inverse agonists, antagonists, partial agonists, and full agonists. Hence, putative structural models for biogenic amine receptors corresponding to the ligand function (inverse agonist-, antagonist-, partial agonist-, and full agonist-bound receptor models) were built by using photointermediate models in the rhodopsin photocascade (M. Ishiguro et al. ChemBioChem. 2004, 5, 298-310). The ligand-receptor recognition of each was examined by modeling receptor-ligand complexes with functional ligands. The complex models suggested that each functional ligand binds the corresponding receptor structure and that ligand-specific interactions contribute to stabilization of the corresponding receptor structure. 相似文献
7.
Heo J Han SK Vaidehi N Wendel J Kekenes-Huskey P Goddard WA 《Chembiochem : a European journal of chemical biology》2007,8(13):1527-1539
We report the 3D structure predicted for the mouse MrgC11 (mMrgC11) receptor by using the MembStruk computational protocol, and the predicted binding site for the F-M-R-F-NH(2) neuropeptide together with four singly chirally modified ligands. We predicted that the R-F-NH(2) part of the tetrapeptide sticks down into the protein between the transmembrane (TM) domains 3, 4, 5, and 6. The Phe (F-NH(2)) interacted favorably with Tyr110 (TM3), while the Arg makes salt bridges to Asp161 (TM4) and Asp179 (TM5). We predicted that the Met extends from the binding site, but the terminal Phe residue sticks back into an aromatic/hydrophobic site flanked by Tyr237, Leu238, Leu240, and Tyr256 (TM6), and Trp162 (TM4). We carried out subsequent mutagenesis experiments followed by intracellular calcium-release assays that demonstrated the dramatic decrease in activity for the Tyr110Ala, Asp161Ala, and Asp179Ala substitutions, which was predicted by our model. These experiments provide strong evidence that our predicted G protein-coupled receptor (GPCR) structure is sufficiently accurate to identify binding sites for selective ligands. Similar studies were made with the mMrgA1 receptor, which did not bind the R-F-NH(2) dipeptide; we explain this to be due to the increased hydrophobic character of the binding pocket in mMrgA1. 相似文献
8.
Alvarez LD Martí MA Veleiro AS Misico RI Estrin DA Pecci A Burton G 《ChemMedChem》2008,3(12):1869-1877
The introduction of a hemisuccinate group at the 21-position of the passive antiglucocorticoid 21OH-6,19OP leads to a compound (21HS-6,19OP) with a notable activity profile toward the glucocorticoid receptor (GR). In contrast to the parent steroid, 21HS-6,19OP behaves as a pure agonist of GR activity in direct transactivation assays. However, the apoptotic effects of 21HS-6,19OP show that the effect depends on cell type: while 21HS-6,19OP is a pure agonist in L929 mouse fibroblasts, in thymocytes 21HS-6,19OP had significant antiglucocorticoid activity. This tissue-specific activity makes 21HS-6,19OP a novel selective GR modulator. To investigate the molecular basis of action of 21HS-6,19OP, we carried out molecular dynamics simulations (6 ns) of the GR ligand binding domain (LBD) complexed with 21HS-6,19OP. Our results indicate that the hemisuccinate moiety may play a key role in stabilizing the active conformation of the receptor dimerization interface, reverting the changes observed with the antagonist 21OH-6,19OP. Other changes in regions of the GR related to cofactor recruitment (possibly tissue-specific), could explain this particular activity profile. 相似文献
9.
Priego EM Pérez-Pérez MJ von Frijtag Drabbe Kuenzel JK de Vries H Ijzerman AP Camarasa MJ Martín-Santamaría S 《ChemMedChem》2008,3(1):111-119
Based on our previous results on the potent antagonist effect of 1H,3H-pyrido[2,1-f]purine-2,4-diones at the human A(3) adenosine receptor, new series of this family of compounds have been synthesized and evaluated in radioligand binding studies against the human A(1), A(2A), A(2B), and A(3) receptors. A remarkable improvement in potency, and most noticeable, in selectivity has been achieved, as exemplified by the 3-cyclopropylmethyl-8-methoxy-1-(4-methylbenzyl)-1H,3H-pyrido[2,1-f]purine-2,4-dione (10) that combines a very high affinity at hA(3) (K(i)=2.24 nM), with lack of affinity for the A(1), A(2A), and A(2B) receptors. On the basis of the published hA(3) receptor model (PDB 1OEA), molecular modeling studies, including molecular dynamics (MD) simulations, have been performed to depict the binding mode of the 1 H,3H-pyrido[2,1-f]purine-2,4-diones and to justify the selectivity against the other adenosine receptors. These studies have led to novel features of the cavity where our antagonists are bound so that the cavity is lined by the hydrogen-bonded Gln 167-Asn 250 pair and by the highly conserved Phe 168. 相似文献
10.
Lee YH Ikegami T Standley DM Sakurai K Hase T Goto Y 《Chembiochem : a European journal of chemical biology》2011,12(13):2062-2070
To obtain insight into the motional features of proteins for enzymatic function, we studied binding reactions between ferredoxin-NADP(+) reductase (FNR) and ferredoxin (Fd) using isothermal titration calorimetry and NMR-based magnetic relaxation and hydrogen/deuterium exchange (HD(ex)). Fd-FNR binding was accompanied by endothermic reactions and driven by the entropy gain. Component-wise analysis of the net entropy change revealed that increases in the conformational entropy of the Fd-FNR complex contributed largely to stabilizing the complex. Intriguingly, analyses of magnetic relaxation and HD(ex) rates with X-ray B factor implied that Fd binding led to both structural stiffening and softening of FNR. Enhanced FNR backbone fluctuations suggest favorable contributions to the net conformational entropy. Fd-bound FNR further showed that relatively large-scale motions of the C terminus, a gatekeeper for interactions of NADP(+) (H), were quenched in the closed form, thereby facilitating exit of NADP(+) (H). This can provide a first dynamic structure-based explanation for the negative cooperativity between Fd and NADP(+) (H) via FNR. 相似文献
11.
Model building of the two photointermediates, lumirhodopsin and metarhodopsin I, and the activated form of rhodopsin, metarhodopsin II, is described. An outward swing of the C-terminal portion of transmembrane segment 3, pivoting on Cys110 at the N-terminal end of transmembrane segment 3, led to structural models of lumirhodopsin and metarhodopsin I. The conformation of the chromophore in the lumirhodopsin and metarhodopsin I models is controlled by the motion of transmembrane segment 3 and agreed closely with the hydrogen-bonding states of the protonated Schiff base in lumirhodopsin and metarhodopsin I as deduced from their FTIR and resonance Raman spectra and with the negative and positive CD bands of lumirhodopsin and metarhodopsin I, respectively. The structure of metarhodopsin II was constructed by an outward swing of transmembrane segment 3 and the rigid-body motion of transmembrane segment 6. The arrangement of the entire transmembrane segment of the metarhodopsin II model closely agreed with the electron paramagnetic resonance spectra of spin-labeled rhodopsin mutants and provided a structural basis for the protonation of Glu134, which is a key process in transducin activation. 相似文献
12.
13.
Agonist activation of central 5-HT(2A) receptors results in diverse effects, such as hallucinations and changes of consciousness. Recent findings indicate that activation of the 5-HT(2A) receptor also leads to interesting physiological responses, possibly holding therapeutic value. Selective agonists are needed to study the full therapeutic potential of this receptor. 5-HT(2A) ligands with agonist profiles are primarily derived from phenylalkylamines, indolealkylamines, and certain piperazines. Of these, phenylalkylamines, most notably substituted phenylisopropylamines, are considered the most selective agonists for 5-HT(2) receptors. This review summarizes the structure-activity relationships (SAR) of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. Selectivity is a central theme, as is selectivity for the 5-HT(2A) receptor and for its specific signaling pathways. SAR data from receptor affinity studies, functional assays, behavioral drug discrimination as well as human studies are discussed. 相似文献
14.
15.
16.
The structure-activity relationships of xanthine derivatives related to the adenosine A(1) receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 1,3-dipropyl-8-(3-noradamantyl)xanthine (KW3902) were investigated by focusing on variations of the 3-substituent. Aromatic residues were well tolerated by the A(1) receptor in that position. A moderate effect of stereochemistry was found for the 3-(1-phenylethyl)-substituted analogue of DPCPX (S>R) at A(1) and A(3) receptors, whereas the opposite stereoselectivity was observed at the A(2) receptor subtypes. A 3-hydroxypropyl substituent was found to be optimal for high A(1) affinity and selectivity. The most potent compound of the present series was 1-butyl-3-(3-hydroxypropyl)-8-(3-noradamantyl)xanthine (10 c), which exhibits a K(i) value of 0.124 nM at rat, and 0.7 nM at human adenosine A(1) receptors, combined with high selectivity (>200-fold) versus the other receptor subtypes. The similarly potent 8-cyclopentyl-3-(3-hydroxypropyl)-1-propylxanthine was converted into a water-soluble phosphate prodrug, which may become a useful pharmacological tool for in vivo studies. 8-Alkyl-2-(3-noradamantyl)pyrimido[1,2,3-cd]purine-8,10-diones, which can be envisaged as xanthine analogues with a fixed 3-propyl substituent, were identified as a new class of potent, selective adenosine A(1) receptor antagonists. For example, compound 14 (8-butyl-substituted) exhibits a K(i) value of 13.8 nM at human A(1) receptors. A selection of the most potent compounds was investigated in [(35)S]GTPgammaS binding assays and showed inverse agonistic activity. Their efficacy was generally lower than that of the full inverse agonist DPCPX, and depended on subtle structural changes. Some of the new compounds belong to the most potent and selective A(1) antagonists described to date. 相似文献
17.
Tarzia G Duranti A Gatti G Piersanti G Tontini A Rivara S Lodola A Plazzi PV Mor M Kathuria S Piomelli D 《ChemMedChem》2006,1(1):130-139
Fatty acid amide hydrolase (FAAH) is a serine hydrolase that catalyzes the intracellular hydrolysis of fatty acid ethanolamides such as anandamide and oleoylethanolamide. Targeting this enzyme may have important therapeutic potentials owing to the multiple physiological roles of these amides. Cyclohexylcarbamic acid biphenyl-3-yl ester (URB524) was one of the most promising FAAH inhibitors so far described. We report the modulation of the electronic and steric features of the proximal phenyl ring of this compound by introducing a series of substituents at the ortho and para positions. pIC50 values were found to correlate with molecular features thought to be involved in the recognition step such as steric hindrance and hydrogen-bonding ability. Derivatives with small polar groups at the para position of the proximal phenyl ring were slightly better FAAH inhibitors than the parent compound URB524. 相似文献
18.
Jørgensen AM Tagmose L Jørgensen AM Topiol S Sabio M Gundertofte K Bøgesø KP Peters GH 《ChemMedChem》2007,2(6):815-826
The serotonin transporter (SERT) is one of the neurotransmitter transporters that plays a critical role in the regulation of endogenous amine concentrations and therefore is an important target for therapeutic agents affecting the central nervous system. The recently published, high resolution X-ray structure of the closely related amino acid transporter, Aquifex aeolicus leucine transporter (LeuT), provides an opportunity to develop a three-dimensional model of the structure of SERT. We present herein a homology model of SERT using LeuT as the template and containing escitalopram as a bound ligand. Our model explains selectivities known from mutational studies and varying ligand data, which are discussed and illustrated in the paper. 相似文献
19.
Inhibition of Golgi mannosidase II with mannostatin A analogues: synthesis, biological evaluation, and structure-activity relationship studies 总被引:2,自引:0,他引:2
Li B Kawatkar SP George S Strachan H Woods RJ Siriwardena A Moremen KW Boons GJ 《Chembiochem : a European journal of chemical biology》2004,5(9):1220-1227
Mannostatin and aminocyclopentitetrol analogues with various substitutions at the amino function were synthesized. These compounds were tested as inhibitors of human Golgi and lysosomal alpha-mannosidases. Modification of the amine of mannostatin had only marginal effects, whereas similar modifications of aminocyclopentitetrol led to significantly improved inhibitors. Ab initio calculations and molecular docking studies were employed to rationalize the results. It was found that mannostatin and aminocyclopentitretrol could bind to Golgi alpha-mannosidase II in a similar mode to that of the known inhibitor swainsonine. However, due to the flexibility of the five-membered rings of these compounds, additional low-energy binding modes could be adopted. These binding modes may be relevant for the improved activities of the benzyl-substituted compounds. The thiomethyl moiety of mannostatin was predicted to make favorable hydrophobic interactions with Arg228 and Tyr727 that would possibly account for its greater inhibitory activity. 相似文献
20.
Selectivity is a major issue in closely related multiligand/multireceptor systems. In this study we investigated the RFamide systems of hNPFF1R and hNPFF2R that bind the endogenous peptide hormones NPFF, NPAF, NPVF, and NPSF. By use of a systematic approach, we characterized the role of the C‐terminal dipeptide with respect to agonistic properties using synthesized [Xaa 7]NPFF and [Xaa 8]NPFF analogues. We were able to identify only slight differences in potency upon changing the position of Arg 7, as all modifications resulted in identical behavior at the NPFF1R and NPFF2R. However, the C‐terminal Phe 8 was able to be replaced by Trp or His with only a minor loss in potency at the NPFF2R relative to the NPFF1R. Analogues with shorter side chains, such as α‐amino‐4‐guanidino butyric acid ([Agb 7]NPFF) or phenylglycine ([Phg 8]NPFF), decreased efficacy for the NPFF1R to 25–31 % of the maximal response, suggesting that these agonist–receptor complexes are more susceptible to structural modifications. In contrast, mutations to the conserved Asp 6.59 residue in the third extracellular loop of both receptors revealed a higher sensitivity toward the hNPFF2R receptor than toward hNPFF1R. These data provide new insight into the subtype‐specific agonistic activation of the NPFF1 and NPFF2 receptors that are necessary for the development of selective agonists. 相似文献