首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agriculture R2 = .61; deforestation R2 = .39). A total of 79 dams, resulting in 72 km3 of volumetric water capacity, were constructed between 2003 and 2018 in the Mekong River Basin. This dam development coincided with a decreasing trend in the number of dry season warm days per year in the lower Mekong River, while Tonle Sap Lake's number of dry season warm days continued to increase during this same period. The present study revealed that Tonle Sap Lake's temperature trends are highly influenced by temperature trends in the local climate, agriculture development and deforestation of the lake's watershed. Although there were no noticeable impacts observed from upstream dam development in the Mekong River Basin, local‐to‐regional agricultural and land management of the lake's watershed appear to be effective strategies for maintaining a stable thermal regime in the lake in order to facilitate maximum ecosystem health.  相似文献   

2.
This study aims to investigate how the hydrological phase in a flood pulse dominated system, Tonle Sap Lake (TSL), affects the chemical form and bioavailability of P. For this purpose, we conducted extensive field campaigns under different hydrological phases: low-water (LW), rising-water (RW), high-water (HW), and falling-water (FW) phases from December 2016 to September 2017. The TSL ecosystem distinctly exhibited seasonality of the monotonal flood pulse between the low-water and high-water periods, in terms of not only water depth (range 0.5–8.0 m) but also water quality, suspended sediment, P dynamics (concentration, speciation and bioavailability), and trophic status. On an annual basis, the lake retained 56.2% of the external P loads, representing a major sink of P. Seasonally, P dynamics in TSL are determined by internal loading, whereas the annual inflows from the Mekong River basin and lake’s tributaries are important sources of P for TSL. Total particulate phosphorus (TPP) constituted >60% of the total P in LW and decreased to <30% during HW, corresponding to the variation in total suspended solids (TSS). Soluble reactive P predominated the total dissolved P during LW (>70%) and decreased to approx. 30% during HW with decreasing TSS and TPP, suggesting the reduction of bioavailability of P in HW. Our results indicate that the flood pulse plays an important role in the chemical form and bioavailability of P in shallow lakes.  相似文献   

3.
洞里萨湖是东南亚最大的且颇具国际影响的淡水湖。基于洞里萨湖湖区不同来源的地形资料,构建了不规则三角网TIN,量算得到不同水位下具有0.1m梯度的洞里萨湖面积和容积。对比分析和水文学法复核结果表明本次构建的洞里萨湖水位与面积和容积的关系是合理的,描绘出了洞里萨湖"低水似湖、高水湖相"的自然景观特点。以洞里萨湖甘邦隆站和出湖控制站波雷格丹站为代表,建立了洞里萨湖水位-面积(容积)关系与实测湖水位的响应关系。结果表明洞里萨湖面积、容积与甘邦隆站水位呈非线性一一对应关系,与波雷格丹站水位成绳套关系,绳套两侧分别对应汛期湄公河向洞里萨湖倒灌和汛后洞里萨湖向湄公河补水。基于河湖关系构建了不同时期不同河湖水位差下的洞里萨湖面积、容积与波雷格丹站水位的相关关系,该精细化的洞里萨湖水位-面积(容积)量算成果可为防汛抗旱精准预报提供科技支撑。  相似文献   

4.
Tonle Sap Lake is the largest freshwater lake in South East Asia, being situated at the heart of the Mekong River Basin. Governance of the lake over the recent past has been weak and overly complex, and the basin governance structure has changed over time in terms of its fisheries management framework. The governance framework initially focused on the commercial exploitation of fish resources, but has more recently switched to a community‐based fisheries management, biodiversity conservation and open access model. This study discusses how the water flows occurring between the Mekong River and Tonle Sap Lake complicate the governance of the lake, and particularly its fisheries, biodiversity, land and water management activities. The establishment of the Tonle Sap Authority (TSA) in 2007 sought to address the governance challenges facing the lake. The current study concludes, however, that the TSA alone is not sufficient and that global, regional and national stakeholders must make an effort to ensure the water flows between the lake and the Mekong River are themselves considered a core governance issue for the Tonle Sap.  相似文献   

5.
The Tonle Sap River (TSR) serves as a natural medium for the reversal flow between Tonle Sap Lake (TSL) and the Mekong River to sustain productivity and biodiversity in the TSR floodplain and TSL. Understanding the hydrological connectivity and its dynamics in the TSR, including its floodplain, is therefore important to support activities that aim to maintain ecological services in the TSR–TSL system. Thus, the main objective of this study is to examine the hydrological connectivity of the TSR and its floodplain by a modelling approach that integrates inundation patterns and sediment dynamics. The Caesar–Lisflood model was applied to describe inundation, sediment erosion, transport, and deposition in the TSR for the period of 2003–2013. The inundation areas connected to the TSR ranged from 140 to 2,327 km2, whereas the isolated inundation areas from the TSR ranged from 0.27 to 504 km2. Sediment dynamics showed its influence on inundation patterns and hydrological connectivity and could alter the yearly inundation ratio (defined as a normalized inundation frequency with a value ranging from 0 to 1) up to 0.8. Our approach provides a quantitative way to determine key factors (e.g., total inundation areas, seasonality, and connectivity of inundation patterns) for further investigation of ecological processes in relation to the inundation patterns and sediment dynamics in the TSR and TSL.  相似文献   

6.
洞里萨湖是湄公河最大的连通湖泊,其水位、面积变化对洞里萨湖的结构和功能产生重要影响,辨识水位、面积演变规律对洞里萨湖区与湄公河三角洲防汛抗旱和生态环境保护具有重要指导意义。基于金边港、波雷格丹和甘邦隆站长系列的日均水位数据及湖区地形资料,定量分析了洞里萨湖水位、面积的年际与年内变化特征。结果表明:洞里萨湖水位涨落缓慢,涨水天数少于退水天数,涨水率高于落水率。洞里萨湖年际水位波动频繁,年平均水位、年最高水位、年水位极差值、年洪水历时、年平均洪水位、日涨水率年际变化总体呈小幅下降趋势,年最低水位、退水天数、日落水率年际变化呈上升趋势。洞里萨湖水位、面积年内呈单峰型变化,5月份最低,平均水位1.51 m,相应面积2 487 km2,实测最低水位1.11 m,相应面积2 053 km2;10月份最高,平均水位8.70 m,相应面积12 768 km2,实测最高水位为10.54 m,相应面积15 261 km2,多年平均年内水位变幅7.63 m,面积变幅10 628 km2。研究成果为下一步洞里萨湖区的综合治理规划奠定了基础。  相似文献   

7.
Natural resource managers across Australia intend to promote healthy floodplain lake ecosystems with rich diversity and composition of biota because such ecosystems provide economically valuable services to society. However, management practice of these floodplain lake ecosystems is impeded by confounding effects of anthropogenic impacts and natural climate variability in recent decades. Yet, there are a few potential biological markers available that profoundly respond to ecological effects of climate change and human disturbances. Cladoceran zooplankton plays an intermediary role in food web dynamics. They show distinct responses to changes in temperature and environmental perturbations, such as acidification, nutrient loading and salinization. The effects of temperature and land‐use changes on food web dynamics and water quality, in particular, are major concerns for shallow lowland large river floodplain lakes management in Australia. Information on zooplankton assemblages and diversity can help increase our understanding of ecological processes in a wide range of environmental exposures. The study of cladoceran fossils and their ephippia preserved in floodplain lake sediment has substantially furthered our understanding of species–environment relationships at different temporal and spatial scales and allowed us to develop powerful inference models for degraded floodplain lake ecosystems. This consequently defines a benchmark of a shift from a naturally intact ecosystem to an ecologically poor regime. In this paper, I have made an attempt to persuade wetland managers through application of contemporary and palaeocladoceran communities to improve management practice of floodplain lake ecosystems in Australia by providing a range of examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Climatic change is recognized as an important factor capable of influencing the structural properties of aquatic ecosystems. Lake ecosystems are particularly sensitive to climate change. Several long time-series studies have shown close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food-web structure. Understanding the complex interplay between climate, hydrological variability, and ecosystem structure and functioning is essential to inform water resources risk assessment and fisheries management. The purpose of this paper is to present the current understanding of climate-induced changes on lake ecosystem phenology. We first review the ability of climate to modulate the interactions among lake hydrodynamics, chemical factors, and food-web structure in several north temperate deep lakes (e.g., Lake Washington, Lake Tahoe, Lake Constance, Lake Geneva, Lake Baikal, and Lake Zurich). Our aim is to assess long-term trends in the physical (e.g., temperature, timing of stratification, and duration of ice cover), chemical (e.g., nutrient concentrations), and biological (e.g., timing of the spring bloom, phytoplankton composition, and zooplankton abundance) characteristics of the lakes and to examine the signature of local weather conditions (e.g., air temperature and rainfall) and large-scale climatic variability (e.g., ENSO and PDO) on the lake physics, chemistry and biology. We also conducted modeling experiments to quantify the relative effect of climate change and nutrient loading on lake phenology. These modeling experiments focused on the relative changes to the major causal associations underlying plankton dynamics during the spring bloom and the summer stratified period. To further understand the importance of climate change on lakes, we propose two complementary directions of future research. First, additional research is needed to elucidate the wide array of in-lake processes that are likely to be affected by the climate change. Second, it is essential to examine the heterogeneity in responses among different water bodies. The rationale of this approach and its significance for dealing with the uncertainty that the climate signals cascade through lake ecosystems and shape abiotic variability and/or biotic responses have been recently advocated by several other synthesis papers.  相似文献   

9.
洞里萨湖是湄公河最大的连通湖泊,湄公河与洞里萨湖水量交换特征一直是国际社会关注的热点问题,但相关研究成果较少。利用4个河湖控制站的长系列水文资料,分析了湄公河与洞里萨湖水量交换特征,结果表明:湄公河与洞里萨湖的水量交换强度大,洞里萨湖对湄公河径流调峰补枯作用明显,每年汛期5—9月份均会发生倒灌,1995—2011年年均倒灌历时122 d,倒灌水量377亿m3,占湄公河干流同期来水的14.4%,倒灌洪峰流量8 402 m3/s,占干流同期来水的20%,其中7—9月份倒灌水量占全年的88.6%;汛后10月份—次年4月份洞里萨湖向湄公河补水,年均补水历时244 d,补水水量711亿m3,是湄公河倒灌入湖水量的1.96倍,占湄公河下游同期来水的29.9%,其中10月份—次年1月份补水量占全年的83.1%。年倒灌历时、水量与洪峰流量,年补水历时、水量与峰值的年际变化较小,变幅分别为76 d、283亿m3、6 095 m3/s和76 d、474 亿m3、4 677 m3/s,变差系数为0.07~0.24。倒灌、补水水量不仅与湄公河和洞里萨湖的来水大小有关,还受到河湖水位差及洞里萨河水位等因素影响。研究成果可为湄公河三角洲和洞里萨湖区治理提供科学依据。  相似文献   

10.
以柬埔寨洞里萨湖流域为对象,基于多源降水信息分析、水文模型构建及适应性分析、参数移植研究及检验等,探讨了资料短缺地区的径流模拟问题。结果表明:气候再分析资料集Ag MERRA在洞里萨湖地区的精度较高,VIC模型在该区域的适应性较好,可以用来进行水文模拟;水文模型参数与流域气候和下垫面因子的相关性较好,拟合优度R2都在0. 65以上,移植的可信度较高;在3个验证流域的实测径流过程对比分析表明,基于参数移植方案构建的水文模型能较好地模拟资料短缺地区的流域水文过程。  相似文献   

11.
The water level of Urmia Lake, the largest inland lake in Iran with maximum water surface area of about 6000 km2, has been shrinking for the last two decades. Although a number of study have been performed to determine drought condition and coastline changes of Urmia Lake, there has not been a detailed study to distinguish anthropogenic effects from climate impacts on the drying of Urmia Lake. In this study, water budget of Urmia Lake and the intensity of drought in the basin were analyzed in the period from 1985 to 2010 and a new hypothesis is proposed to quantify anthropogenic and climate impacts in reducing the volume of Urmia Lake. The results of this study indicate that human impacts on the Lake and its basin are more important than climate factors. Though previous studies assumed that ground water output from Urmia Lake is negligible, the results of this study show the presence of significant groundwater seepage from Urmia Lake. Major changes in the variables that reduced the water level of Urmia Lake were observed since 1998. Anthropogenic impacts and climate factors have roughly 80% and 20% effects on the drying up of Urmia Lake, respectively. Hence, the first step to recover Urmia Lake could be the revision of management surface water, operation of dams and groundwater resources. The second step could be the review and classification of agricultural products grown in the region in terms of water consumption and teach local people the best practice methods for irrigation.  相似文献   

12.
Agricultural best management practices (BMPs) have been implemented in the watersheds around Lake Erie to reduce nutrient transfer from terrestrial to aquatic ecosystems and thus protect and improve the water quality of Lake Erie. However, climate change may alter the effectiveness of these BMPs by altering runoff and other conditions. Using the Soil and Water Assessment Tool (SWAT), we simulated various climate scenarios with a range of BMPs to assess possible changes in water, sediment, and nutrient yields from four agricultural Lake Erie watersheds. Tile drain flow is expected to increase as is the amount of sediment that washes from land into streams. Predicted increases in tributary water flow (up to 17%), sediment yields (up to 32%), and nutrient yields (up to 23%) indicate a stronger influence of climate on sediment compared to other properties. Our simulations found much greater yield increases associated with scenarios of more pronounced climate change, indicating that above some threshold climate change may markedly accelerate sediment and nutrient export. Our results indicate that agricultural BMPs become more necessary but less effective under future climates; nonetheless, higher BMP implementation rates still could substantially offset anticipated increases in sediment and nutrient yields. Individual watersheds differ in their responsiveness to future climate scenarios, indicating the importance of targeting specific management strategies for individual watersheds.  相似文献   

13.
Climatic changes influence the thermal and oxygen dynamics of a lake and thus its ecological functioning. The impacts of climatic changes on tropical lakes are so far poorly studied and the extent of the effects is therefore uncertain, most investigations describing only potential effects. In this study, we applied the one-dimensional lake ecosystem model GOTM-ERGOM to quantify the effects of climate change on thermal stratification, oxygen dynamics, and primary production in meso-oligotrophic Lake Volta. GOTM-ERGOM was calibrated and validated using two years of observed data. The validated model was used to evaluate a series of future climate change scenarios. The model simulations showed good agreement with observed water temperature, dissolved oxygen and chlorophyll-a and indicated intensified stratification and reduced oxygen levels in the productive water layers of the lake. However, the longer-lasting stratification (prolonged stability) did not translate into permanent stratification. A relatively small (1?m) upward shift of thermocline depth resulted in an 8%–12% volume loss of the oxygen-rich upper mixed layer, which may be significant for the fisheries of the lake as it diminishes the size of suitable fish habitats. Light limitation of primary production renders the lake somewhat resilient to intensive algae blooms, as traceable in both the present and in the future climate scenarios. In the long term, the ongoing climate change may affect riparian communities that depend on the lake's fisheries for their livelihood. In consequence, future lake management strategies for implementation need to account for the impacts of future climate change.  相似文献   

14.
Harmful algal blooms (HABs) are a recurring problem in many temperate large lake and coastal marine ecosystems, caused mainly by anthropogenic eutrophication. Implementation of agricultural conservation practices (ACPs) offers a means to reduce non-point source nutrient runoff and mitigate HABs. However, the effectiveness of ACPs in a changing climate remains uncertain. We used an integrated biophysical modeling approach to predict how Lake Erie cyanobacterial HAB severity (bloom biomass) may change under several climate and ACP implementation scenarios, using western Lake Erie and its largely agricultural watershed as our study system. An ensemble of general circulation model projections was used to drive spatially explicit land use and hydrology models of the Maumee River watershed, the output of which informed a predictive model of Lake Erie HAB severity. Results show that, in the absence of changes in ACPs, the frequency of severe HABs is projected to increase during coming decades, owing to increased inputs of nutrients from the watershed. These anticipated increases are due to increased total precipitation and more frequent higher-magnitude rainfall events. While further implementation of ACPs appears capable of reducing severe HAB events, widespread implementation would be necessary to reduce HAB severity below current management targets. This study highlights how continued climate change will only exacerbate the need for land management practices that can reduce nutrient runoff in agriculturally dominated ecosystems, such as Lake Erie. It also shows how interdisciplinary, biophysical modeling approaches can help identify strategies to mitigate HABs in the face of anthropogenic stressors.  相似文献   

15.
Lake Erie's water quality has fluctuated since European settlement due to cultural eutrophication and the effects of invasive species. Our attempts to understand the cause-and-effect linkages between observed ecosystem changes and various stressors are evolving. Non-indigenous species, pollutants, land-use and climate change that can alter a lake's physical and chemical environment can manifest rapid changes in community composition and abundance of phytoplankton. As such, for many decades researchers have used phytoplankton data from Lake Erie to track environmental changes. We provide a chronological account of previous and ongoing assessments of pelagic algae to summarize past and present environmental conditions of Lake Erie. This review necessarily focuses on diatom-based assessments as their preserved remains in sediments have been used to hind-cast human-induced impacts and recovery. Because of their uniqueness, this review summarizes where possible the long-term trends according to the western, central and eastern lake basins. Overall, this historical assessment summarizes a period of significant eutrophication throughout most of the 20th century, followed by water quality improvement due to nutrient reductions and establishment of filter-feeding dreissenids. Recent data suggest new issues associated with blooms of diatoms and blue-green algae. The challenges facing Lake Erie underline the need for continued monitoring and evaluation of historical records that will help us distinguish natural from anthropogenic changes, and to reveal the causes and extent of environmental insults in order to make management decisions.  相似文献   

16.
Response of water and sediment generation to climate change and anthropogenic activities is becoming a hot topic in the middle reach of the Jinsha River Basin. In this research, coefficients of variation and concentration degree (i.e., Cv and Cd) and double mass curve (DDC) were adopted to examine the changes in water and sediment discharge and their relationships with precipitation. The contribution rates of climatic and anthropogenic factors to water and sediment discharge were assessed through comparisons between the measured and predicted values in the baseline and postbaseline periods in the basin. The main results were: (a) the water and sediment discharges of the basin showed a decreasing trend from 2006 to 2014, with peak points of Cv and Cd of sediment discharge of the basin in 2009 and 2010, respectively; (b) the precipitation had a major influence on water discharge variations, and the peak point of the DDC of the cumulative precipitation and sediment discharge was consistent with the cumulative water and sediment discharge; and (c) under annual and flooding season scales, the contribution rates of anthropogenic factors to water discharge were 63.060% and 70.457%, respectively. The contribution rates of anthropogenic factors on sediment discharge were 84.790% and 85.541%, respectively. The impacts of anthropogenic factors on water and sediment discharge were more significant than the impacts of precipitation, in which the construction and operation of cascade hydropower stations (CHS) were believed to play a crucial role.  相似文献   

17.
Many large lake ecosystems are experiencing increasing eutrophication and persistent cyanobacteria‐dominated algal blooms affecting their water quality and ecosystem productivity because of widespread non‐point and point nutrient sources. Accordingly, the present study utilized data of July 2003 and January–February 2004, as well as previous measurements of nutrients and physico‐chemical variables (electrical conductivity, dissolved oxygen, temperature, pH, turbidity and chlorophyll‐a), to characterize the spatial and temporal trends, as a means of better understanding the factors influencing lake environmental conditions, as support tools for long‐term ecosystem management and for better understanding the long‐term trends and effects. Inshore gulf areas were found to represent zones of maximum nutrient concentrations, compared to the deep main lake zones, with significant inter‐parameter correlations. Phosphorus, silicon and chlorophyll‐a concentrations were significantly correlated. Water electrical conductivity was also significantly and positively correlated with soluble reactive silicon (SRSi), alkalinity hardness DO, while exhibiting a negative association with water transparency. Water turbidity and transparency, electrical conductivity, and SRSi concentrations clearly describe a gradient from the gulf into the main lake. For such a shallow gulf, these findings suggest primary productivity is influenced mainly by the availability of nutrients, light transparency and the extent of availability of resuspended nutrients. The increasing eutrophic state of Lake Victoria is a serious concern since it contributes to an increased potential of more frequent occurrences of cyanobacterial blooms, a potential public health risk to both humans and wildlife. Improved understanding of influences from previous fish species introductions and concomitant changes in indigenous fish species, increased lake basin population and anthropogenic activities, water hyacinth resurgences, sustainability of biodiversity, and current interests in cage farming, are among the major concerns and challenges facing the contemporary Lake Victoria. The trends regarding nutrients and physico‐chemical characteristics are intended to support better monitoring efforts and data to promote the lake's ecosystem services and the sustainable management of the lake ecosystem.  相似文献   

18.
Coastal Wetlands (CWs) provide critical ecosystem services that maintain biogeochemical processes and habitats in the coastal zone of the Great Lakes. When nutrient-laden surface waters flow into CWs from their watersheds, internal physical, chemical, and biological processes can alter the final nutrient loadings to the lake. However, CWs can periodically be inundated with lake water from seiche events, and little is known about the impacts of seiches on nutrient processing and loadings from CWs. To evaluate the influence of lake seiches on CW phosphorous-loading dynamics, we built a multi group structural equation model (SEM) using climatic and wave data, and interannual (2009–2018) estimated sediment and phosphorous loadings from three CWs on the north-shore of central Lake Ontario (Rouge Marsh, Duffin’s Marsh, and Carruthers Marsh). Wind speeds, lake levels, and an increased peak period of wave spectra were significant explanatory variables of seiche events (p-value < 0.001). We identified that seiche events caused significant sediment resuspension (p-value < 0.001) in CWs, which contributed to a significant increase of phosphorous loading to the coastal zone of Lake Ontario (p-value < 0.001). Our results indicate that lake-seiche events can influence CW phosphorous-loadings to Lake Ontario, and should be considered when modelling water quality in the nearshore zone.  相似文献   

19.
Balaton is the largest shallow lake in Central Europe and the most important recreational area in Hungary. Water balance of the lake is positive, while natural water level fluctuation has been significant. In 2000, an extreme drought period started. Until 2003, water level dropped about 70 cm (about 20% of the average depth). Public concern grew and the idea of water transfer from the Rába River was raised. To examine possible impacts a comprehensive study was prepared. The main question was whether water transfer was really needed and what criterion should be applied. For developing the methodology, three pillars were used: the potential climate change, the precautionary principle and the EU Water Framework Directive. The study covered impacts of the planned water transfer on the Rába-Balaton system in terms of changes of the water regime, water demands and quality, nutrient loads and ecosystems. The Thomas-Fiering ARMA model was used for characterizing monthly change of the natural water resources of the lake. A Monte Carlo generator was developed to analyze the occurrence of extreme events, uncertainties, possible climate change impacts and water level control strategies.  相似文献   

20.
为揭示洞庭湖近十几年水文连通性的变化特征并对其未来变化进行预测,研究极端气候事件在洞庭湖水文连通性变化中作出的贡献,使用水文连通性指数法、ETCCDI极端气候指数、Hurst指数以及数理统计分析方法进行研究。研究结果表明:洞庭湖水文连通性整体呈现夏季>秋季>春季>冬季的特征,夏季、秋季、春季和冬季的整体连通性指数均值分别为0.95、0.88、0.81和0.63,且洞庭湖的水文连通性在近30年比较稳定;经持续性预测发现洞庭湖水文连通性Hurst指数均大于0.5,表示其在没有人类活动干扰的情况下会在未来呈延续下降的趋势;洞庭湖水文连通性指数随着水位增加逐渐增加且增速逐渐放缓,水位增加对其具有正向影响的边际递减效应;极端降水事件对洞庭湖水文连通性具有较为明显的正向影响,而极端气温事件对洞庭湖水文连通性影响作用较小。研究结果有助于充分认识洞庭湖水资源演变规律,对保障洞庭湖流域水资源安全具有重要的理论和现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号