首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
侧向风作用下,双车交会过程中车辆和桥梁的风荷载会发生突变。以大跨度悬索桥为工程背景,通过车桥组合节段模型风洞试验,测试不同状态车辆和桥梁各自的气动力系数。针对强风作用下双车交会过程,通过风-车-桥耦合振动分析,对比分析双车交会情况下车辆和桥梁的响应,讨论双车间距、风速、车速等因素的影响。研究表明双车交会时背风侧车辆风荷载突变使车辆的横向响应显著增大。  相似文献   

2.
侧风作用下静动态车-桥系统气动特性数值模拟研究   总被引:2,自引:0,他引:2  
我国现阶段正处于轨道交通建设的高峰时期,线路中桥梁占有相当大的比重,车辆在桥梁上运行时构成车-桥系统共同承受侧向风的作用,车辆和桥梁间存在着显著的相互气动影响。基于数值模拟方法,对侧向风作用下车-桥体系的空气绕流场进行静动态模拟分析,将静态数值模拟气动力系数与风洞试验结果进行对比,基于动态气动统流特性,提出将桥面上方流场分为6个特征区域,并进一步分析风速和车速对车-桥系统气动特性的影响。分析表明,体系绕流状态具有三维特性,气动力随着车速和风速变化显著。研究结论对车-桥系统绕流及静动态气动荷载的确定具有一定的参考价值。  相似文献   

3.
基于风-车-桥(线)耦合振动的风屏障防风效果研究   总被引:1,自引:0,他引:1  
为考察风屏障的防风效果,通过风洞试验测试平地路基、高路堤、桥梁三种典型线路上设置不同风屏障情况下车辆的气动力系数,采用风-车-桥(线)耦合振动的分析方法研究车辆的动态响应,讨论风屏障高度、车辆线路位置及线路构造形式等因素的影响。结果表明,风屏障可有效地降低强风作用下车辆的响应,平地路基上设置2.05m风屏障时,车辆运行的瞬时临界风速可达50m/s;车辆的轮重减载率、倾覆系数及竖向加速度对车辆线路位置较为敏感;线路构造形式对背风侧车辆响应影响较大,风屏障高度相同时,高路堤上的防风效果较好。  相似文献   

4.
车-桥耦合系统迭代解法研究   总被引:2,自引:2,他引:0  
在已有车-桥耦合研究的基础上,推导了车-桥耦合系统的迭代解法.建立了车-桥系统模型,利用ANSYS软件分析单自由度质弹系统车辆模型在通过简支梁桥时桥梁的动力响应.用无量纲参数分析了在车-桥相互作用下,桥梁的位移响应与常力过桥时桥梁位移响应之间的差异.计算结果表明,迭代解法可方便求解车辆桥梁相互作用下,车-桥耦合系统的动力响应,其计算结果与相关文献结果较为一致.  相似文献   

5.
基于大系统的思想,建立车-桥-风浪流耦合动力系统,包括车辆子系统、桥梁子系统和风浪流耦合场子系统。根据各子系统之间的相互作用力以及车辆子系统与桥梁子系统之间的位移协调关系,建立车-桥-风浪流耦合动力系统的运动方程,并基于分离迭代法提出了车-桥-风浪流耦合动力系统动态响应的求解流程,从而建立跨海公铁两用桥梁车-桥-风浪流耦合动力系统的振动分析方法。以某跨海公铁两用斜拉桥方案为对象进行研究,结果表明:风浪流耦合场同时激励车辆和桥梁的主梁、桥塔及水中基础,与风场单独作用相比,风浪流耦合场能够激发桥梁产生更大幅度的横向和扭转振动,恶化列车运行安全性指标,桥梁主梁在主跨跨中处的横向位移、横向加速度、扭转位移、扭转加速度的均方根分别增大0.8%、23.1%、4.9%和0.5%,在边塔处的相应均方根分别增大204.9%、167.0%、198.7%和314.7%;列车车体加速度、轮轨横向力和轮重减载率分别增大60.9%、7.2%和6.6%。因此,对于跨海公铁两用桥梁,需合理考虑风浪流耦合作用,仅考虑风场单独作用将高估桥梁结构和列车行车的安全性。  相似文献   

6.
风-车-桥系统空间耦合振动研究   总被引:1,自引:0,他引:1  
风-车-桥耦合振动系统中将自然风作为空间相关的平稳随机过程,车辆采用质点-弹簧-阻尼器模型,桥梁采用有限元模型。在分析风桥间的流固耦合作用、车桥间的接触耦合作用及风对车辆的空间脉动作用的基础上,将风、车、桥三者作为一个交互作用、协调工作的耦合动力系统,提出了一种较为完善的风-车-桥系统空间耦合振动分析模型。基于轮轨接触点处的几何协调条件和力学平衡关系,建立了系统运动方程的分离迭代求解算法。最后以京沪高速铁路南京大桥为工程背景,采用自行研发的桥梁结构分析软件BANSYS对比分析了风-车-桥系统振动特点。  相似文献   

7.
风-汽车-桥梁系统空间耦合振动研究   总被引:11,自引:0,他引:11  
为了考虑侧风引起的车轮相对于桥面的侧向相对滑动,在车轮与桥面之间引入了一个特殊阻尼器,这个阻尼器的阻尼系数依赖于车辆与桥梁的竖向耦合运动。在综合考虑路面粗糙度、车辆悬挂系统以及车轮相对于桥面侧向相对滑动的基础上,提出能够考虑桥梁的静风响应、抖振响应、汽车-桥梁耦合振动、系统的时变特性以及结构几何非线性和气动荷载非线性影响的风-汽车-桥梁系统空间耦合振动分析模型,编制了相应的分析程序。该程序既可以预测不同路面粗糙度,车速以及干、湿、雪、冰路面状况下行驶于桥梁上车辆的行车安全性,也可以评价低风速下车辆驾驶舒适度以及侧风和车辆移动荷载对桥梁振动的影响。  相似文献   

8.
确定车辆和桥梁各自的气动参数是车-桥耦合振动分析的基础。为研究主梁断面形状对车辆和桥梁气动特性的影响,利用自制的三分力分离装置-交叉滑槽系统,针对8种分离式双箱主梁断面进行多工况模型风洞试验。通过对不同模型及工况试验结果的对比,讨论不同主梁断面形状下车-桥系统的雷诺数效应,得出不同行车位置处车辆和桥梁各自气动参数随主梁宽高比的变化规律以及其阻力系数的取值方法,为后续抗风设计及风-车-桥耦合振动研究提供参考。  相似文献   

9.
结合工程实际,选取三角形曲线作为车辆荷载的简化时程曲线,进而研究在10~70 km/h范围内不同车速作用下波形钢腹板连续梁桥的动态响应。通过分析研究得出:车辆荷载的冲击系数随车速的增大而增大;10~70 km/h车速下桥梁结构主要以竖向一阶振动为主,振幅随车速增大而增大,且随车速的增大,桥梁结构振动阶次逐渐减少。  相似文献   

10.
随机车流下的风-汽车-桥梁系统空间耦合振动研究   总被引:2,自引:0,他引:2  
在交通荷载观测及统计分析的基础上,获得交通状况的代表性数据,对记录的车型、车重、车距和车速进行统计,在此基础上进行随机车流模拟,编制随机车流模拟程序RTF(Random Traffic Flow),程序中首次全面引入车型、车重、车距和车速4个参数;建立可以考虑任意车辆数目、不同车道以及车辆相向行驶功能的随机车流下的风-汽车-桥梁系统空间耦合振动分析框架,编制相应的分析模块RTFWVB(Wind-Vehicle-Bridge system analvsis).以杭州湾跨海大桥为工程实例,详细研究密集、稀疏运营状态,车流单向、相向行驶以及侧风与车辆移动荷载对桥梁关键部位动力响应的影响.分析表明:密集运营状态下桥梁动力响应明显大于一般运营状态下的相应值;车流方向对桥梁振动影响不大;密集运营状态下车辆移动荷载主要决定桥梁动力响应的均值,而侧风主要影响桥梁动力响应的脉动部分,风速越大波动越显著.  相似文献   

11.
为研究低速磁浮列车在简支梁上运行和静悬浮时的磁浮列车-简支梁系统耦合振动特性,以长沙磁浮商业运营线为背景,选取其中一孔25m预应力混凝土简支梁进行现场动载试验,实测同一列磁浮列车以两种质量(重车:30t+30t+30t;轻车:24t+24t+24t)在简支梁上通过和静悬浮时的车体、悬浮架、简支梁的振动加速度。试验数据表明:磁浮列车在低速运行时,悬浮系统不稳定,使得简支梁加速度在60Hz处有较大峰值,且幅值随着车速的增大而减小,最后趋于平稳,简支梁的加速度在低速运行范围内较高速运行时大,并且在低速运行范围内随着车速的增大而减小,这一频率(60Hz)不受悬浮质量的影响;悬浮质量越大,悬浮系统越不易稳定,重车的稳定车速为50km/h,轻车的稳定车速为30km/h;悬浮质量越大,悬浮系统的不稳定性对车体和悬浮架加速度的影响越大;磁浮列车静悬浮时,简支梁表现为持续的强迫振动,该激励频率为90Hz,使车体、悬浮架、简支梁均在90Hz处出现峰值,这一频率(90Hz)与悬浮质量的大小无关。  相似文献   

12.
An analytical model for dynamics of wind-vehicle-bridge (WVB) systems is presented in this paper in the time domain with wind, rail vehicles and bridge modeled as a coupled vibration system. The analytical model considers many special issues in a WVB system, which include fluid-solid interaction between wind and bridge, solid contact between vehicles and bridge, stochastic wind excitation on vehicles and bridge, time dependence of the system due to vehicle movement, and effect of bridge deck on vehicle wind load and vice versa. The models of wind, vehicles and bridge are presented with wind velocity fluctuations simulated using the simplified spectral representation method, with vehicles modeled as mass-spring-damper systems, and with bridge represented by a finite element model. The interactions between wind and bridge are similar to those considered in conventional buffeting analysis for long span bridges. In considering difficulties in measuring aerodynamic coefficients of moving vehicles on bridge deck, the cosine rule is adopted for the aerodynamic coefficients of moving vehicles to consider yaw angle effect, and expressions of wind forces on moving vehicles are then derived for engineering application. To include mutual effects of wind loads, aerodynamic parameters of vehicles and bridge deck are measured, respectively, using a composite section model test and a specially designed test device. The dynamic interaction between vehicle and bridge depends on both geometric and mechanical relationships between wheels of vehicles and rails on the bridge deck. The equations of motion of the coupled WVB system are derived and solved with a nonlinear iterative procedure. A cable-stayed bridge in China is finally selected as a numerical example to demonstrate dynamic interaction of the WVB system. The results show the validity of the present model as well as wind effects on the rail vehicles and the bridge.  相似文献   

13.
A dynamic analysis model of a wind-train-bridge system is established. The wind excitations of the system are the buffeting and self-excited forces simulated in time domain using measured aerodynamic coefficients and flutter derivatives. The proposed formulations are then applied to a long rail-cum-road suspension bridge. The dynamic responses of the bridge and the train under wind action are analyzed. The results show that the lateral and rotational displacements of the bridge are dominated by wind, while the vertical by the gravity loading of the moving train. The running safeties of the train vehicles are much affected by wind. Under wind conditions of 30–40 m/s, the offload factors, derail factors and overturn factors of the train vehicles exceed the safety allowances, to which great attention should be paid. Translated from Engineering Mechanics, 2006, 23(2): 103–110 [译自: 工程力学]  相似文献   

14.
A formulation of three-dimensional dynamic interactions between a bridge and a high-speed train using wheel–rail interfaces has been developed. In the interface, contact loss is allowed, the vertical contact is represented by finite tensionless stiffness and the lateral contact is idealized by finite contact stiffness and creepage damping. Such stiffness and damping are nonlinearly dependent on normal contact force. The relative rotations of a wheelset to the rails about its vertical and longitudinal axes are included. Bridge eccentricities and deck displacement due to torsion are accounted for in bridge deck modeling. A numerical algorithm using separate integrations for bridges and trains, and iterations for interface compatibilities is established. A case study of a ten-car train passing over a two-span continuous bridge at various speeds and rail irregularity wavelength ranges is analyzed. The responses of the bridge, car-bodies and wheelsets are investigated for their behavior, acceptability and relations with the wavelengths. Analytical and numerical evaluations of resonant speeds are in good agreement, and the exit span vibration is more amplified than the entrance one at those speeds. The computed relative displacements of all wheelsets to the rail facilitate an explicit assessment for derailment risk.  相似文献   

15.
In this work the running safety of high-speed trains on a short-span bridge is assessed. A probabilistic approach that combines Monte Carlo simulation with the extreme value theory is used and the existence of track irregularities is taken into account along with the variability of parameters related to the bridge, the track and the train. As case study, a 12 m span filler beam bridge was selected as the train–bridge interaction effects are most significant for short spans. The running safety is assessed for the case of loss of contact between the wheel and the rail, taking into consideration only the vertical wheel–rail interaction and assuming that no lateral forces act on the train. This research enables the characterisation of the wheel unloading coefficient, the identification of the critical wheel and also the definition of the maximum allowable speed for trains to run safely on the bridge.  相似文献   

16.
随着我国铁路线网密度的加大以及龙卷风等极端天气出现的频次增多,列车遭受龙卷风袭击的风险不断增加。利用物理模拟器对列车进行测压试验,通过试验得到的气动力对龙卷风作用下高速列车的运行安全性进行评估。结果表明:受龙卷风气压降和水平风速的共同影响,列车距龙卷风中心不同相对位置时,所受风荷载作用机制明显不同;迎风侧轮轨横向力主要由侧力产生,风速较大时,升力和侧滚力矩对轮轨垂向力的贡献增大;横向力、脱轨系数、轮重减载率等列车运行安全性指标随径向距离的增大先增大后减小;列车运行安全性指标随风速、车速的增大而增大,列车安全运行的龙卷风临界风速值随车速的增大而急剧减小,其中,当车速为350km/h时,轮对横向力对应的临界风速仅为11.06m/s。  相似文献   

17.
Vibration response of track and foundation subjected to dynamic loading is one of the key issues to solve on-track safety of high-speed train. The previous pioneering works commonly only considered the train moving load, however, in reality, trains are likely to be on track when an earthquake occurs due to the high frequency and widespread distribution of earthquake activities. Hence, a three-dimensional FEM of track-subgrade- foundation interaction system with bidirectional seismic and moving loads is established for investigating the differences and relations of vibration responses of subgrade in such two immensely disparate loads: train moving load and earthquake-moving load. As a case study, the vibration characteristics of the Beijing-Shanghai High-speed Railway of the China, excited by moving load and seismic-moving composite load are analyzed respectively, with various velocity (v = 50 m/s, 70 m/s, 100 m/s, 130 m/s). On the other hand, the increases in operational train speeds mean that critical velocity effects are becoming more common on high speed rail lines. If unaddressed, critical velocity issues can cause safety concerns and elevated maintenance costs. Based on the derailment coefficient and lateral deformation of the rail, the critical speed of the model is discussed, which is a reasonable improvement to the derailment mechanism of the train.  相似文献   

18.
列车荷载作用下铁路斜拉桥将在不同方向上发生振动,列车竖向荷载作用下导致的主梁纵向振动将影响道床稳定性和伸缩装置的使用,甚至影响行车安全性和舒适性。采用等效纵向荷载研究移动荷载作用下斜拉桥纵向振动机理,推导纵向共振速度估算公式。以一大跨度铁路斜拉桥为实例,分析了不同速度的移动荷载作用下结构动力响应。结果表明,当移动荷载速度与估算纵向共振速度接近时,移动荷载通过桥梁时的纵向加载频率与桥梁一阶纵向振动频率接近,斜拉桥发生纵向共振现象,主梁和桥塔动力响应显著增大。  相似文献   

19.
During the last two decades, much attention has been paid to various vibration problems associated with railways. They include the dynamic response of railway bridges and railway tracks at grade under the action of moving trains. However, studies on the role of track structures on the vibration of railway bridges are rather limited. In this paper, a new element called bridge-track-vehicle element is proposed for investigating the interactions among a moving train, and its supporting railway track structure and bridge structure. The moving train is modelled as a series of two-degree-of-freedom mass-spring-damper systems at the axle locations. A bridge-track-vehicle element consists of vehicles modelled as mass-spring-damper systems, an upper beam element to model the rails and a lower beam element to model the bridge deck. The two beam elements are interconnected by a series of springs and dampers to model the rail bed. The investigation shows that the effect of track structure on the dynamic response of bridge structure is insignificant. However, the effect of the bridge structure on the dynamic response of the track structure is considerable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号