首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对湿法炼锌过程中稀散金属锗的浸出,以含锗氧化锌烟尘为原料,采用常压富氧浸出技术从含锗氧化锌烟尘中回收锌和锗。氧化锌烟尘的X射线衍射(XRD)和扫描电子显微镜-能谱分析(SEM-EDS)等分析结果表明,富锗氧化锌烟尘除含有氧化锌外,还含有少量硫化锌与硫化铅,部分硫化锌与氧化锌混合形成致密颗粒。考察了铜离子浓度、时间、液固比、温度、氧压等因素对氧化锌烟尘浸出锌、锗的影响。结果表明,在常压富氧条件下,温度90℃、液固比7mL/g时,采用两段浸出4h,锌、锗的浸出率可超过90%;浸出渣主要物相为硫酸铅和硫化锌。采用氧化锌烟尘做中和剂对酸浸溶液进行中和还原处理,控制溶液pH值为3~3.5,反应时间1h,可将溶液中Fe3+的浓度控制在0.02g/L内,且该过程溶液中的锗不发生水解损失,有利于后续溶液中锗的高效分离回收。  相似文献   

2.
针对湿法炼锌过程中稀散金属锗的浸出,以含锗氧化锌烟尘为原料,研究了采用常压富氧浸出技术从含锗氧化锌烟尘中回收锌和锗。通过氧化锌烟尘的XRD、SEM-EDS等分析,表明富锗氧化锌烟尘中除含有氧化锌烟尘外,还含有少量硫化锌与硫化铅,部分硫化锌与氧化锌混合形成致密颗粒。考察了铜离子浓度、时间、液固比、温度、氧压等因素对氧化锌烟尘浸出锌、锗的影响。结果表明,在常压富氧条件下,温度90 ℃、液固比7 mL/g时,采用二段浸出4 h,锌、锗的浸出率可超过90%;浸出渣主要物相为硫酸铅以及硫化锌。采用氧化锌烟尘做中和剂对酸浸溶液进行中和还原处理,控制溶液pH值为3~3.5,反应1 h,可将溶液中Fe3+浓度控制在0.02 g/L内,且该过程Ge不发生水解损失,有利于后续溶液中锗的高效分离。  相似文献   

3.
采用碱性焙烧法提取高纯铝灰中的铝,探讨了焙烧温度、焙烧时间、碱灰比等因素对铝灰中铝浸出率的影响。结果表明,碱性焙烧适宜条件为:焙烧温度600 ℃、焙烧时间60 min、碱灰比1.0,此时得到的焙烧产物物相为NaAlO2、Al2O3,焙烧产物在温度25 ℃、液固比10∶1条件下水浸60 min,铝浸出率为78.95%。  相似文献   

4.
采用加压酸浸工艺从含锗氧化锌烟尘中高效浸出锗、锌,研究了浸出温度、浸出时间、氧气压力、硫酸用量及液固体积质量比对锗、锌浸出率的影响。结果表明,在硫酸用量为理论量的1.5倍、液固体积质量比为3mL/g、浸出时间为3.0h、浸出温度为80℃、氧气压力为800kPa、搅拌速度为500r/min的条件下,锗、锌的浸出率分别可达75.11%、97.21%。  相似文献   

5.
锌冶炼烟尘中锗的富集及锌的回收   总被引:1,自引:0,他引:1  
针对硫酸浸出一丹宁沉锗方法存在回收率低、丹宁消耗量大等问题,采用氯化铵焙烧法富集了广西某厂含锗氧化锌烟尘中的锗,并通过直接用水浸取焙烧渣的方法成功回收了锌。试验结果表明,在氯化铵用量为烟尘质量的1、2倍、氯化反应温度为500℃、氯化反应时间为1h的优化条件下,Ge的挥发率可高达95、30%,而锌的浸出率也达到了84.80%。此法成功富集了锗,同时浸出的粗锌通过进一步除杂可回收制备碱式碳酸锌,整个流程中锌的直收率为82.70%。  相似文献   

6.
采用“还原-中和沉淀-低酸浸出”方法从低浓度含锗浸出液中高效富集锗,研究了还原中和沉淀和低酸浸出过程主要影响因素对锗分离富集的影响。结果表明,在硫化锌精矿用量为2.0 g/L,氧化锌烟尘用量为19 g/L,反应温度为80 ℃,还原时间为20 min,中和时间为240 min的条件下,锗沉淀率可达97.24 %;在初始硫酸浓度为165 g/L,液固体积质量比为4 mL/g,浸出温度为60 ℃,浸出时间为60 min的条件下,锗浸出率可达98.78 %。  相似文献   

7.
对Rb_2O品位为0.2725%的含铷云母—长石精矿进行多种铷浸出工艺探索对比试验,研究表明,精矿采用氯化钙焙烧-水浸工艺铷浸出效果最好。焙烧条件为精矿:氯化钙配比1:0.8,焙烧温度900℃,焙烧时间1.5h,水浸条件为温度20℃即室温,液固比2:1,浸出时间2 h,试验获得了Rb2O浸出率86.36%的技术指标。  相似文献   

8.
《矿冶》2017,(6)
硬锌渣是锗提取的重要原料之一。目前,回收硬锌中的锗普遍采用的工艺为"中浸—氧化焙烧—氯化蒸馏"的工艺流程回收。企业中多采用焦炭来提供热源,对物料进行焙烧处理,存在能源消耗大、劳动强度大、环境污染大等缺点。本文以真空炉渣经中性浸出后的含锗硬锌渣为原料进行了微波管式炉氧化焙烧试验研究。通过研究,获得最优微波焙烧温度为500℃,焙烧时间2.5 h,所得到最佳浸出率为86.82%;微波显著缩短了氧化焙烧时间、降低了焙烧温度,改善了焙烧条件,实现了清洁、节能高效的氧化焙烧。  相似文献   

9.
硬锌渣是锗提取的重要原料之一。目前,回收硬锌中的锗普遍采用的工艺为“中浸-氧化焙烧-氯化蒸馏”的工艺流程回收。企业中多采用焦炭来提供热源,对物料进行焙烧处理,存在能源消耗大、劳动强度大、环境污染大等缺点。本文以真空炉渣经中性浸出后的含锗硬锌渣为原料进行了微波氧化焙烧实验研究。通过研究获得本实验条件下最优微波焙烧温度为500℃,焙烧时间2.5h,以及相同坩埚下最优物料量为200g,所得到最佳浸出率为86.82%;微波显著缩短了氧化焙烧时间、降低了焙烧温度,改善了焙烧条件,实现了清洁、节能高效的氧化焙烧。  相似文献   

10.
铁酸锌还原焙烧试验研究   总被引:3,自引:1,他引:2  
解立群  施哲  胡汉 《矿冶》2011,20(3):76-78
对锌焙砂进行还原焙烧,再对还原焙砂进行浸出。浸出温度70~80℃;pH值2~3;液固比6∶1;浸出时间2 h。对比试验得到最佳还原焙烧的温度900℃、焙烧时间60 min、粉煤配比1∶10。这时锌的浸出率达到90%左右,铁浸出率15%左右。再对浸出渣磁选,得到了铁精矿。  相似文献   

11.
石煤提钒过程中,为提高钒浸出率,往往会在焙烧阶段添加添加剂,而PVC废塑料则是没有得到很好回收利用的大宗废弃物。针对这一状况,以PVC废塑料为添加剂,进行了石煤提钒工艺条件研究。结果表明:(1)在焙烧过程中加入与石煤质量比为10%的PVC废塑料,在升温速率为10℃/min,焙烧温度为800℃,焙烧时间为60 min,焙砂酸浸的硫酸体积浓度为15%,液固比为1.5 mL/g,浸出温度为95℃,浸出时间为4 h情况下,钒浸出率可达92.60%,与空白焙烧—酸浸工艺相比,钒浸出率提高了6.50个百分点。(2)石煤焙烧阶段加入10%的PVC废塑料后,石煤中各主要元素的浸出率有不同程度的提高,说明PVC的加入有助于破坏石煤的矿物结构,促进后续酸浸过程中钒的浸出,但并不给后续富集钒和沉钒工艺带来不利影响。因此,在石煤提钒焙烧过程中添加PVC废塑料,可改善钒的浸出效果,降低钒的浸出成本,实现PVC废塑料的综合利用,经济效益和环境效益显著。  相似文献   

12.
研究了回收氯化石灰中和渣中的锗的工艺,采用热水洗涤除钙、稀盐酸浸出锗除钙,洗涤浸出后的渣用两段逆流碱浸出锗.酸浸出液与一次碱浸出液混合并调节pH为2~2.5,用栲胶沉淀锗,焙烧沉淀渣得到锗精矿.采用此工艺从氯化石灰中和渣到锗精矿,锗的回收率可以达到90%以上.  相似文献   

13.
以活性炭为还原剂, 氩气为保护气, 采用微波还原焙烧的方法, 将3种低品位赤铁矿还原为磁铁矿, 并研究了微波还原焙烧温度、碳含量、保温时间及微波输出功率对其磁选指标的影响规律。结果发现: 相同质量3种赤铁矿进行微波还原焙烧, 随配碳量的增加, 其升温速率加快, 且3种赤铁矿具有相似的微波还原焙烧规律, 即: 在570~650 ℃、理论配碳量、微波输出电压220 V及保温10 min的条件下, 其还原产物弱磁选后的品位和回收率均达到最佳, 且磁铁精矿经细磨-二次磁选后, 铁品位均能提高到60%以上。该研究对开发低品位赤铁矿的选冶技术新流程有重要的指导意义。  相似文献   

14.
针对褐铁矿铁品位难提高的问题, 采用“微波还原焙烧-磁选”工艺, 将褐铁矿还原成磁铁矿, 弱磁选后获得高品位磁铁精矿。采用SEM和XRD检测方法, 研究了褐铁矿微波焙烧过程中的矿相演变规律, 同时采用单因素实验方法, 重点考察了保温时间、焙烧温度、配碳量以及磁选电流和磨矿细度对焙烧矿磁选结果的影响。结果表明:随着温度升高, 褐铁矿逐渐还原为磁铁矿, 加热到570~650 ℃时, 生成大量磁铁矿, 750 ℃下焙烧矿烧结严重, 并产生大量弱磁性的硅酸亚铁, 不利于后续磁选。单因素实验结果及分析表明, 褐铁矿微波还原焙烧-磁选最佳工艺条件为:保温时间7.5 min, 焙烧温度650 ℃, 配碳量1.40%, 磁选电流0.6 A, 磨矿细度-0.044 mm。最终获得的铁精矿品位、回收率及产率分别为61.33%、75.11%和40.17%, 达到了炼铁生产入炉要求。  相似文献   

15.
针对含贵金属热滤渣物料的物相及元素组成, 提出了氧化焙烧脱硫-硫酸选择性浸出贱金属铜和镍富集贵金属工艺, 讨论了物料粒度、焙烧时间、焙烧温度、硫酸浓度、浸出时间、浸出温度等因素对贵金属富集比的影响。获得最佳工艺参数为: 热滤渣粒度0.080~0.106 mm, 焙烧时间6 h, 焙烧温度700 ℃, 硫酸浓度45%, 浸出时间5 h, 浸出温度95 ℃。在此条件下, 脱硫率达到98.89%, 铜、镍浸出率分别为98.33%和98.12%, 硫酸浸出渣中Au含量1 198.60 g/t, Ag含量1 807.79 g/t, Pt含量1 801.27 g/t, Pd含量1 937.66 g/t。从原料到硫酸浸出渣, 贵金属富集比达到14.19倍。该工艺流程操作简单、富集比高、回收率高、成本低, 可为从热渣中富集贵金属提供借鉴作用。  相似文献   

16.
热酸浸出锌浸渣中镓锗的研究   总被引:6,自引:0,他引:6  
研究了锌浸渣热酸浸出过程的工艺条件,分析了浸出热力学和动力学机理,并用于指导回收稀有金属镓和锗。实验结果表明,锌浸渣中镓和锗浸出的最佳工艺条件为:硫酸初始质量浓度为188 g/L,反应温度为95℃,反应时间为3 h,液固比为5∶1,搅拌速度为300 r/min,该条件下多组综合实验的酸浸出液中Ga和Ge的浸出率均高于86%和62%。锌浸渣中金属镓锗的浸出过程在动力学上属于"未反应核减缩"模型,浸出过程主要受反应温度、始酸浓度、反应时间的影响,反应由界面化学反应控制。  相似文献   

17.
废催化剂中钼、钒回收工艺的研究   总被引:1,自引:1,他引:0  
张梅英 《矿冶》2011,20(4):109-112
比较了加碱焙烧浸出和焙烧碱浸方法。选择焙烧碱浸工艺进行试验,使用碳酸钠为浸出剂,考察了焙烧温度、焙烧时间及碳酸钠浓度等条件对钼、钒浸出率的影响。确定焙烧温度为650℃,焙烧3 h,碳酸钠加入量为50 g/L的一次逆流浸出工艺,在该工艺下钼的浸出率达91%,钒的浸出率达77.17%。考察沉降温度及氯化铵浓度对钒的沉降率的影响,确定温度在80~90℃,氯化铵浓度为90 g/L时,钒的沉降率达到97%。  相似文献   

18.
为了研究不同干馏条件下富锗褐煤干馏产物分布及锗在各产物中的配分, 采用逐级化学提取法和SEM-EDX首先测定了褐煤中锗的赋存形态, 又采用钢甑反应器进行了不同热解终温(450~850℃)和保温时间(30 min和300 min)下的褐煤干馏试验。结果表明: 褐煤中锗主要以腐殖质结合态存在(占比93.64%)。影响锗挥发的主要因素是干馏温度, 高温(> 650℃)下锗挥发率受保温时间影响较小。绝大部分(>95%)锗迁移到煤气中, 焦油和热解水中锗回收率极低, 褐煤中的锗可进一步从煤气中分离获取。从锗挥发率并兼顾焦油产率的角度考虑, 较好的干馏条件为终温650℃、保温30 min, 此时锗挥发率为98.29%, 焦油产率为5.13%。另外, 还采用TG-MS研究了干馏煤气主要组分的释放行为, 初步探讨了煤气还原性组分与锗挥发率的关系。结果表明: 干馏煤气的还原性组分(CO、H2和H2S)体积浓度与锗挥发率存在明显的正相关性, 煤气还原性越强, 锗挥发率越高, 但高温(850℃)下可能发生过还原反应, 造成锗挥发率的降低。   相似文献   

19.
刘景景 《金属矿山》2021,49(11):211-214
粗TiCl4除钒尾渣含钒2%~5%,具有较高的回收利用价值。为实现除钒尾渣中钒资源的低成本回收,提出了除钒尾渣直接焙烧—铵盐浸出—沉钒制备偏钒酸铵的新工艺,并开展了相关条件试验,重点考察了 焙烧温度、NH4HCO3用量、浸出温度、浸出时间对提钒效果的影响。结果表明:①除钒尾渣在650 ℃下焙烧150 min,获得的焙烧样中主要物相有金红石型TiO2、锐钛型TiO2、Al2O3、V2O5和SiO2,钒氧化率达78.12%, 可采用铵盐浸出实现钒的低成本提取。②条件试验确定焙烧样适宜的浸出条件为:NH4HCO3用量n(NH4+)/n(V)=2,液固比5 mL/g,浸出温度80 ℃,浸出时间30 min。在上述条件下,钒浸出率可达76.65%,浸出液V浓度 为5.71 g/L。浸出液经4次循环浸出后,V浓度提高至19.66 g/L。该较高浓度的浸出液直接沉钒,获得了纯度>99%的偏钒酸铵产品,满足标准一级品(YS/T 1022—2015)的要求,XRD分析进一步证实其具有较高的纯 度。研究结果可为除钒尾渣中钒资源的短流程回收提供技术支撑。  相似文献   

20.
焙烧歧化-铁屑还原浸出低品位锰矿工艺研究   总被引:1,自引:1,他引:0  
舒琳  刘海燕  邹琴 《矿冶工程》2016,36(4):72-75
采用焙烧歧化-铁屑还原法对低品位锰矿进行还原浸出, 探究了一种焙烧过程不添加还原剂、反应全过程无有害气体产生的高效浸出锰的方法, 考察了焙烧温度、酸矿比、铁矿比、液固比、反应温度、反应时间对锰浸出率的影响。结果表明, 在焙烧温度700 ℃、酸矿比1.05∶1、铁矿比0.14∶1、液固比6∶1、浸出温度50 ℃下浸出2 h, 锰浸出率达到92.63%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号