首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
好氧颗粒污泥的培养及实现同步脱氮   总被引:1,自引:0,他引:1  
采用厌氧颗粒污泥和少量活性污泥为种泥,进水为人工配水,在SBR反应器中采用逐渐减少污泥沉降时间的方法造成选择压,培养出了好氧颗粒污泥,颗粒污泥粒径在2 mm左右、SVI值为20 mL/g左右、MLSS为10 g/L左右。结果表明:成熟的好氧颗粒污泥对COD、NH4+-N和TN的平均去除率分别为94%、97.5%和68.6%,出水COD、NH4+-N和TN平均浓度分别为64.74、1.92和27.53 mg/L,出水NO3--N和NO2--N平均浓度分别为18.01和4.44 mg/L。结合微生物相观察,可以判断好氧颗粒污泥实现了同步脱氮。  相似文献   

2.
好氧颗粒污泥发生丝状菌污泥膨胀的控制措施   总被引:3,自引:0,他引:3  
在SBR反应器内接种好氧颗粒污泥,经驯化后对人工模拟废水的处理效果良好。考察了培养过程中污泥形态的变化以及发生丝状菌污泥膨胀时反应器对污染物的去除效果,并探讨了丝状菌在污泥颗粒化过程中的作用以及控制丝状菌污泥膨胀的方法。结果表明,丝状菌污泥膨胀对COD的去除率有影响,但对去除NH3-N、TP的效果影响不大。通过增加反应器内的水力剪切力对控制丝状菌污泥膨胀有一定的效果,而减小C/N值,均衡进水中的营养可从根本上解决污泥膨胀问题。成熟的好氧颗粒污泥的MLSS约为3 000 mg/L,沉降性能较好,SVI为77 mL/g;对COD、NH3-N、TP均具有较高的去除率,分别达到94.52%9、5%9、0%左右。  相似文献   

3.
在SBR反应器中加入网板,利用网板改善流动环境和凝聚条件,促成好氧颗粒污泥的稳定形成。通过观察加设和不加设网板的SBR反应器中活性污泥的颗粒化过程,发现经过90 d左右的培养,加设和不加设网板的SBR反应器中均形成成熟、稳定的好氧颗粒污泥。其中,加设网板的SBR反应器中MLSS值为5 900 mg/L、SV为10%、SVI值为16.95~17.03 mL/g、平均沉降速率为41.2 m/h、粒径集中分布在2.0 mm左右,占污泥总量的70%;不加设网板的SBR反应器中MLSS值为5 800 mg/L、SV为12%、SVI值为18.67~32.87 mL/g、平均沉降速率为31.56 m/h、粒径为1.0~2.0 mm,占污泥总量的25%。加设网板的SBR对COD、NH4+-N、TP的去除率最高可分别达到91.64%、87.17%和83%;未加网板的SBR对COD、NH4+-N、TP的去除率最高可分别达到83.2%、79.41%、70.68%。可知,加设网板的SBR中形成的好氧颗粒污泥的性能更好。  相似文献   

4.
采用厌氧、好氧交替运行的小试SBR反应器实现了在秋、冬季无保温措施下好氧颗粒污泥的培养及对生活污水中污染物的去除。研究发现在秋、冬季温度由18℃逐渐降至10℃并长期维持在较低温度的条件下,SBR反应器中形成了具有良好物化特性的颗粒污泥,稳定期污泥的平均粒径为300μm,反应器中有较高的生物量(MLSS为6 000 mg/L),污泥沉降性能较好,SVI为50~60 m L/g。对COD、PO_4~(3-)-P、NH_4~+-N均具有较好的去除效果,平均去除率分别达到85.8%、98.3%、99.2%。通过在反应周期结束增设2 h缺氧搅拌,实现了对TN的进一步去除,去除率达95.2%。  相似文献   

5.
好氧颗粒污泥技术用于味精废水处理的研究   总被引:2,自引:0,他引:2  
以厌氧颗粒污泥为接种污泥,采用人工模拟废水在SBR反应器内培养好氧颗粒污泥,35 d后颗粒污泥成熟,反应器对COD和NH4+-N的去除率分别高于95%和99%。采用该反应器处理味精废水,当COD、NH4+-N的容积负荷分别为2.4、0.24 kg/(m3.d)时,对COD、NH4+-N和TN的去除率分别在90%、99%和85%左右,且颗粒污泥未出现解体的现象。以厌氧颗粒污泥为接种污泥、味精废水为进水,在与上述相同条件下培养好氧颗粒污泥,经过60 d的培养,反应器内的污泥以絮状污泥为主,该系统对COD、NH4+-N和TN的去除率分别为85%、99%和70%。  相似文献   

6.
采用好氧颗粒污泥技术处理低温城市污水,探讨了低温好氧颗粒污泥的形成机理,考察了有机负荷、水力停留时间和曝气量对序批气提式反应器运行的影响.结果表明,低温好氧颗粒污泥具有较高的生物量和较好的沉降性能,其胞外聚合物中的蛋白质含量达到11.99 mg/gM LSS,远高于多糖类物质的含量,这是低温好氧颗粒污泥形成的重要因素.有机负荷的变化对去除COD和TP的影响较小,但较高的有机负荷会导致出水NH4+ -N浓度升高和NO2 -N的积累,出水NO2 -N达8.2 mg/L;延长HRT可使对TN的去除率升高到79.0%,但对去除TP的影响不大;当曝气量较高时,对TN和TP的去除率都有所下降,控制曝气量为0.10 m3/h可以实现对氮、磷的同步高效去除.  相似文献   

7.
采用低浓度城市生活污水,以好氧絮状活性污泥为接种污泥,在3个不同运行条件的序批式反应器(SBR)中培养好氧颗粒污泥,并考察了其降解特性.结果表明,通过对剪切力、沉降时间等运行参数的调控,3个反应器(R1~R3)分别在第14、16和14天出现了细小颗粒,成熟后的颗粒污泥粒径可达到1.0 mm,其中R1、R2中颗粒的粒径无明显差别,而R3中颗粒的粒径较R1,R2中的略大;成熟的颗粒污泥周围出现大量原生动物,各反应器内污泥的SV1值保持在29-40 mL/g内,显示出良好的沉降性能.成熟的颗粒污泥对有机碳源具有较强的吸附与降解性能,并且具有同步硝化反稍化能力.各反应器出水COD浓度稳定在30 mg/L左右,NH4+-N浓度<1.0mg/L,对污染物的去除效果良好.  相似文献   

8.
在两个小试SBR中接种成熟的好氧颗粒污泥(AGS),分别研究了不同时长的好氧及厌氧生物选择段下AGS的特性及对污染物的去除效果,为维持AGS的稳定性提供技术支持。结果表明,生物选择段的设置能够有效抑制丝状菌的生长,并能较好地维持AGS的稳定性。AGS的SV30/SV5值维持在0.90以上,SVI保持在40 m L/g以下,MLVSS/MLSS值在0.6~0.7之间,EPS为37~44 mg/g MLVSS,PN/PS值为1.3~2.0,含水率为97.3%~98.5%。不同选择段下反应器对污染物均具有较好的去除效果。不同好氧选择段下反应器对COD、TP、TIN及NH+4-N的去除率分别保持在98%、90%、77%及82%以上;不同厌氧选择段下反应器对COD、TP、TIN及NH+4-N的去除率分别保持在97%、85%、75%及75%以上。虽然好氧选择段下的除污效果要略高于厌氧选择段的,但后者的运行成本更低。  相似文献   

9.
采用间歇膨胀复合水解工艺预处理综合城镇污水(B/C值0.3,TN为30~80 mg/L,SS300 mg/L),考察了不同HRT下,水解反应器出水B/C值的变化以及对COD的去除率和污泥浓度。结果表明:在HRT由16 h降低到6.5 h的过程中,水解反应器的B/C变化值由-0.06提高到0.07,而COD去除率由42%降低到22%,在HRT为8 h条件下,B/C变化值和COD去除率分别为0.07和27%。间歇膨胀复合水解池出水经SBR处理后,其COD、NH+4-N、TN分别为65、0.75、17.71 mg/L,而生产性SBR出水的COD、NH+4-N、TN分别为93、16.4、34 mg/L。应用悬浮生物滤池处理生产性SBR池出水,在HRT为2 h、温度为14~19.5℃、进水NH+4-N为21.8~41mg/L条件下,出水NH+4-N为1.6~12.79 mg/L,平均去除率为74.6%,NH+4-N负荷为0.238kg/(m3·d)。可见,间歇膨胀复合水解与悬浮生物滤池工艺适用于综合城镇污水的提标改造。  相似文献   

10.
丝状菌膨胀是好氧颗粒污泥(AGS)不稳定的主要原因之一,然而,对于这种失稳的AGS的修复研究国内外尚较少涉及。因此,在SBR中接种发生丝状菌膨胀的AGS,通过逐步缩短沉降时间及降低C/N值,研究失稳AGS的修复进程及对污染物的去除效果。观察发现,失稳的AGS外表毛糙、结构松散且很不稳定,修复过程中部分大颗粒经历了先解体后重新颗粒化的过程,且解体的颗粒污泥可以作为新颗粒污泥形成的晶核及载体。失稳AGS的修复时间稍短于直接利用活性污泥培养AGS的:19 d时大部分颗粒表面已经比较光滑,25 d时AGS在反应器中已占主导,30 d时完全重新实现颗粒化(颗粒化率为91.48%),此时的AGS外表光滑、形状规则,但颜色偏淡。44 d时AGS呈明显的黄色、结构致密,SVI、平均粒径及颗粒化率分别为65.77 m L/g、1.42mm及95.19%。最终,出水COD、TIN、NH+4-N及TP分别为41.12、6.17、3.67及0.54 mg/L,相应的去除率分别为95%、92%、95%及97%。  相似文献   

11.
以黄水作为脱氮除磷的碳源有利于以废治废。在SBR反应器中,以具有同步脱氮除磷的颗粒污泥为对象,采用黄水(300 mg/L)和醋酸钠(100 mg/L)作为碳源,研究对氮和磷的去除效果,并分析其机理。试验结果表明:污泥粒径主要在0.9~1.3 mm之间,沉速主要在30~60m/h之间,污泥颜色较深,周围粘性物质较多,部分颗粒污泥发生了解体;对NH+4-N的去除率98.1%,试验后期出水NO-3-N在4.44~18.82 mg/L之间,对磷的平均去除率由94.0%降低为51.3%;对COD的最大降解速率为122.30 mg COD/(g SS·h),最大释磷速率由14.39 mg PO3-4-P/(g VSS·h)下降到3.29 mg PO3-4-P/(g VSS·h),最大吸磷速率由5.99 mg PO3-4-P/(g VSS·h)下降到2.47 mg PO3-4-P/(g VSS·h),碳源不足导致反硝化不完全;颗粒污泥中TP的含量为3.3%~4.0%,其中胞外EPS中TP占污泥TP的49.3%,EPS的含量仅为17.33 mg/g SS,EPS中蛋白质和总糖分别占56.9%和20.0%。  相似文献   

12.
针对难降解制膜工业废水,采用铁碳微电解/好氧颗粒污泥耦合工艺进行处理,铁碳微电解为连续流,好氧颗粒污泥为序批式反应器(SBR)。耦合工艺系统成功培育出具有优异沉降性能的好氧颗粒污泥,120 d时SVI30在30 m L/g左右、平均粒径为316μm;出水COD、NH_4~+-N和TN浓度分别为130.1、6.6、23.7 mg/L,处理效果优于对照组。铁碳微电解预处理不但能提高废水的B/C值,而且能促进生化处理段颗粒污泥的形成,有利于难降解工业废水的处理。  相似文献   

13.
SBR法处理垃圾渗滤液与粪水的混合液   总被引:1,自引:0,他引:1  
采用有效容积为1200m3的SBR反应器处理垃圾渗滤液与市政粪水的混合液,探讨了对两者进行混合处理的可行性.反应器对COD、BOD5、TN、NH+4-N和TP的平均去除率分别达到92.12%、98.48%、81.45%、99.68%和96.52%,相应的平均去除负荷分别为145.75、51.51、22.73、25.04和0.53g/(kgSS·d).当控制C/N在5.0~6.5之间时,对TN的平均去除率可达81.45%,对COD的平均去除率为92.46%,出水COD≤450 mg/L、BOD5≤30 mg/L、NH+4-N≤10mg/L、TN≤180mg/L、TP≤1.0mg/L、色度≤320倍.SBR反应器对垃圾渗滤液和粪水的混合处理效果较好,粪水的混入可有效提高垃圾渗滤液的可生化性以及反应器对TN和TP的去除率,有效解决了垃圾渗滤液中TN去除的难题;同时,反应器内可能存在比短程硝化反硝化消耗更少碳源的脱氮反应形式,但出水COD浓度仍略高.  相似文献   

14.
以颗粒/絮体共存的SBR生物除磷系统为研究对象,考察了生物除磷污泥的形成过程、颗粒/絮体共存及各自单独存在下的污泥特性和除污性能。在40 min的沉淀时间下,以厌氧/好氧交替方式运行的SBR反应器中有白色颗粒污泥出现,随着运行则系统处于颗粒和絮体共存的状态。运行至第60天,污泥的平均粒径为553μm,颗粒(粒径200μm)占污泥总量的比例为67%。颗粒/絮体共存的形式可以提高絮体污泥的沉降性能,同时降低颗粒污泥解体所导致的出水SS浓度的增加。另外,颗粒/絮体共存系统对COD、PO3-4-P、NH+4-N的去除率分别为80%、98.5%、100%。而单独颗粒系统的出水NH+4-N为7.63 mg/L,单独絮体系统的出水PO3-4-P为5.87 mg/L。颗粒与絮体共存更有利于对污染物的去除及污泥沉降性能的改善。  相似文献   

15.
好氧颗粒污泥处理综合城市污水的中试研究   总被引:1,自引:0,他引:1  
采用好氧颗粒污泥技术对水质波动较大、含大量工业废水的城市污水开展了中试研究.研究发现采用该类污水可成功培养出好氧颗粒污泥,占COD总量60%的颗粒态COD是导致所形成的颗粒不规则、结构松散且颗粒化进程较慢的主要原因.运行期间系统对COD,NH4+-N、TP的平均去除率分别为(75.80±16.09)%、(52.85±33.65)%,(66.57±22.36)%.当进水COD浓度较低时,系统的去除效果受到严重的影响.进水氨氮浓度的大幅度变化对颗粒污泥沉速、粒径的影响不明显,但对颗粒污泥密度的影响显著.氨氮冲击负荷是导致颗粒污泥解体的主要原因.因此,建议在好氧颗粒污泥工艺的运行过程中设置厌氧搅拌阶段以加快颗粒化过程及保持颗粒的长期稳定,并应避免氨氮的冲击负荷.  相似文献   

16.
通过投加复合铁碳材料,经过70 d,在序批式活性污泥反应器(SBR)内培养出粒径为0. 5~4 mm、具有良好脱氮效果的成熟好氧颗粒污泥。在此过程中复合铁碳材料在提高污泥沉降性、加快颗粒化进程、提高脱氮效率等方面发挥了积极的作用。成熟好氧颗粒污泥的脱氮性能会受到pH值、DO浓度、C/N值的影响,最佳pH值为7. 0、DO为(2. 0±0. 1) mg/L、C/N值为8,相应的NH_4~+-N去除率分别为95. 60%、95. 78%、97. 87%,TN去除率分别为93. 64%、94. 28%、96. 28%。  相似文献   

17.
SBAR反应器的好氧颗粒污泥低温培养及运行特性   总被引:1,自引:0,他引:1  
以葡萄糖和乙酸钠混合基质为碳源,絮状污泥为接种污泥,采用间歇式气升内循环反应器(SBAR),考察了在低温条件下好氧颗粒污泥的培养、颗粒污泥特性及其对污染物的去除效果.结果表明:在温度为(10±1)℃时,成功培养出了好氧颗粒污泥;其平均粒径为1.82 mm,结构密实、表面光滑,平均湿密度为1.036 g/cm3,沉速为18.6~65.1 cm/min.反应器稳定运行后,对COD、NH4+-N、TP的去除率分别为(90.6%~95.4%)、(69.2%~79.9%)、(52.5%~59.5%);出水硝酸盐和亚硝酸盐浓度均小于0.2 mg/L;启动阶段的亚硝化率为34.9%~52.3%.可见,SBAR反应器对污染物具有较好的去除效果,同时在低温下好氧颗粒污泥也具有较高的同步硝化反硝化能力.  相似文献   

18.
本试验研究了有机负荷对好氧颗粒污泥反应器运行性能的影响。试验结果表明:有机负荷控制在0.48~0.96kg/(m~3·d)运行时,颗粒污泥内微生物活跃度较高对废水中污染物降解效果较好,COD、NH_4~+-N、TN和TP平均去除率分别为97.16%、98.02%、86.82%和95.97%。有机负荷太高或太低都不能实现颗粒污泥对污染物的处理效果,只有合适的有机负荷范围能够有效维持好氧颗粒污泥反应器运行的稳定性,实现对COD、氨氮、TN和总磷的处理且具有较好的去除效果。  相似文献   

19.
SBR中好氧颗粒污泥的培养与除污效能   总被引:8,自引:1,他引:8  
以普通絮状活性污泥为种泥,采用人工配水,通过控制运行条件在SBR中成功地培养出了好氧颗粒污泥。研究表明,该好氧颗粒污泥具有良好的同步硝化反硝化和去除COD的性能。好氧颗粒污泥成熟后平均直径为4~5mm,沉速为72~90m/h,反应器中MLSS为7.8g/L,使反应器对COD和NH3-N的去除率分别达到了95%~98%和75%~90%。  相似文献   

20.
Mg~(2+)对SBR中好氧颗粒污泥培养的影响研究   总被引:1,自引:1,他引:1  
在三个SBR反应器中分别投加0、10和100 mg/L的镁离子,研究了镁离子对好氧颗粒污泥形成的影响.结果表明,镁离子的添加有利于颗粒污泥的形成,促进了各种微生物的生长,提高了污泥浓度,并且促进了胞外多糖的生成.10 mg/L的Mg2+更有利于颗粒污泥的形成和成长,其颗粒化程度高且平均粒径大,并使颗粒污泥的形成时间从32 d缩短到18 d.而100 mg/L的Mg2+对颗粒污泥的促进效果不如10 mg/L的明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号