首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为进一步探究还原焙烧—弱磁选富集工艺处理红土镍矿的试验效果及可行性,在实验室小型试验基础上,在44 m推板烧结窑上进行了还原焙烧半工业试验。结果表明,焙烧温度为1 150℃左右,焙烧时间为90 min,煤配比为20%,助溶剂组分元明粉、苏打、硼砂配比为6∶2∶1、用量为22.5%,还原产品磨矿细度为-0.074 mm占85%,弱磁选磁场强度为80 kA/m情况下,可获得含Ni 6.39%、回收率73.84%,含Fe 77.72%、回收率64.24%的镍铁精矿。该镍铁精矿可作为产品直接出售,也可进一步精炼为高品位镍铁合金,实现了该腐殖型红土镍矿的有效利用。  相似文献   

2.
裴晓东  钱有军 《金属矿山》2013,42(12):57-60
印度尼西亚某低品位红土镍矿含镍1.57%、含铁21.67%,其中镍主要以硅酸镍形式存在。为将该矿石的镍含量提高到6%以上以符合印度尼西亚政府对出口红土镍矿的规定,以硫酸钠和碳酸钠为助熔剂,进行了还原焙烧-弱磁选试验。试验结果表明,当煤用量为25%、硫酸钠+碳酸钠的配比和总用量分别为3∶1和20%、焙烧温度为1 200 ℃、焙烧时间为60 min、磨矿细度为-0.074 mm占85%、磁场强度为96 kA/m时,可获得产率为22.06%、镍品位为6.05%、镍回收率为85.03%、铁品位为65.74%、铁回收率为66.92%的镍铁精矿,其镍品位超过印度尼西亚出口红土镍矿的品位下限。  相似文献   

3.
还原焙烧—磁选工艺可有效提取红土镍矿中的镍和铁等有价金属,由于影响红土镍矿还原焙烧—磁选效果的因素较多,导致工业生产中的选矿指标不稳定。为进一步提高还原焙烧—磁选工艺处理红土镍矿的效果,本研究以青海某镍矿为原料,采用正交试验与BP神经网络相结合的方法,对还原焙烧—磁选工艺的还原剂用量、焙烧温度、料层厚度、焙烧时间及磁场强度等因素进行了优化。结果表明:通过BP神经网络模型优化后的试验条件为还原剂用量9.5%、焙烧温度1 070℃、料层厚度10.0 mm、焙烧时间65 min及磁场强度2.5 kA·m-1,在此条件下可获得产率为30.29%的镍粗精矿,比采用正交试验最优因素组合条件所得的镍粗精矿产率提高了2.83%。  相似文献   

4.
以三种煤为还原剂,研究了不同煤种对镍红土矿还原焙烧—磁选的影响,结果表明,煤的种类对还原过程有较大影响,石煤为还原剂时,镍铁精矿中可获得较高的镍品位和回收率,而铁的品位和回收率较低,可以实现镍的选择性还原。确定的最佳工艺条件为石煤作还原剂,用量为5%,IN为助熔剂,用量为15%,焙烧温度为1250℃,焙烧时间为40min。在此条件下可以得到镍品位8.97%、镍回收率82.64%的镍铁精矿。  相似文献   

5.
智谦 《金属矿山》2016,45(4):77-81
回转窑直接还原红土镍矿存在所需温度高、对耐火材料要求苛刻、还原指标差等问题。为开发一种高效低成本的红土镍矿球团还原工艺,考察了以CaO为熔剂改变红土镍矿碱度对红土镍矿球团还原焙烧-弱磁选效果的影响。结果表明:自然碱度下,在还原温度为1 400 ℃、还原时间为60 min时,所得还原产品经磨矿-弱磁选,获得的磁性产品镍、铁品位分别仅3.8%和72.9%,回收率分别为17.8%和39.8%,磁性产品中含有较多的镁橄榄石和顽火辉石;随着红土镍矿碱度的增加,红土镍矿的软熔温度先降低后提高,碱度为1.0时,红土镍矿的软熔温度最低,比自然碱度时降低了100 ℃;碱度为1.0的红土镍矿球团在1 300 ℃下还原焙烧60 min后,经磨矿-弱磁选,获得的磁性产品镍、铁品位分别为8.7%和83.8%,回收率分别为85.6%和62.8%。XRD和扫描电镜分析结果表明:自然碱度的红土镍矿还原焙烧生成的Fe-Ni合金晶粒多在5 μm以下,并且分布比较分散,还原产品中夹杂有较多的杂质;添加CaO至碱度为1.0时,Fe-Ni合金晶粒可以长大到10~50 μm,还原产品中杂质较少,镍和铁得到了明显的富集。试验结果可以为红土镍矿球团还原焙烧-磁选制取镍铁新工艺提供理论基础。  相似文献   

6.
以褐煤、烟煤、无烟煤和兰炭作为还原剂, 对低品位红土镍矿进行了直接还原焙烧-磁选实验研究。结果表明, 还原剂种类、粒度和用量对还原过程有较大影响, 其中褐煤作为还原剂时还原效果最好。最佳实验条件为: 红土镍矿原料粒度-0.075 mm, 还原剂(褐煤)粒度为-0.25 mm、用量4%, 焙烧温度1 200 ℃, 焙烧时间90 min, 焙烧后焙砂磨细至-0.05 mm, 在磁场强度0.3 T下粗选再在0.1 T下精选, 可得到镍品位3.2%、镍回收率82%、铁品位65%、铁回收率69%的镍铁精矿。  相似文献   

7.
红土镍矿深度还原-磁选试验研究   总被引:2,自引:0,他引:2  
采用深度还原-弱磁-强磁工艺对低品位红土镍矿进行了开发利用研究,重点研究了深度还原合适的温度、还原时间、配碳系数、料层厚度、强磁精矿返回量等参数。研究表明,适宜的深度还原条件为:还原温度1 275 ℃、还原时间50 min、配碳系数2.5、料层厚度25 mm、强磁精矿返回量占原矿量的25%,还原产物经弱磁选(场强为130 kA/m),可获得镍、铁品位分别为6.96%、34.74%,镍、铁总回收率分别为94.06%、80.44%的优质镍铁精矿产品;同时富含大量细小镍铁颗粒的强磁精矿是红土镍矿深度还原的优质成核剂。  相似文献   

8.
邱沙 《矿冶》2016,25(6):40-44
某矿含镍1.04%,含铁40.55%,镁及二氧化硅含量较低,为典型的褐铁矿型红土镍矿。矿样粒度较细,小于0.038mm粒级部分占66.58%。镍主要赋存在褐铁矿和硅酸盐矿物中,分布率分别为75.0%和24.04%。对该镍矿进行了还原焙烧—酸浸试验研究,结果表明,在炭粉粒度-0.038 mm大于90%,炭粉用量30%,焙烧温度700℃,焙烧时间30 min,酸料比0.5 m L/g,浸出温度80℃,浸出时间2.0 h,浸出液固比5∶1时,镍、钴、铁的浸出率分别为74.88%,93.83%,35.87%。  相似文献   

9.
安月明 《矿冶》2011,20(1):54-57
对红土型镍矿在生产镍铁的RKEF法工艺过程中的还原焙烧环节进行了中试研究。试验中,主要分析了元素分布与粒级的关系、焙烧温度的选择、还原剂的配比,也讨论了焙烧生产中的设备及其相关操作参数。  相似文献   

10.
低品质红土镍矿选择性还原-磁选制备镍铁合金   总被引:1,自引:0,他引:1  
杨超 《矿冶工程》2021,41(2):99-101
以TFe品位21.70%、Ni品位1.92%的低品位红土镍矿为原料,采用回转窑选择性还原-磁选工艺制备镍铁合金,研究了还原温度、磨矿方式以及磁场强度对镍铁回收率的影响。结果表明,适宜的工艺参数为: 还原温度1150 ℃、细磨(磨矿时间3 min)、磁场强度150 mT,此条件下所得镍铁合金中镍品位7.26%、镍回收率96.06%、铁品位85.15%、铁回收率89.23%,实现了低品位红土镍矿中铁、镍高效回收利用,并且镍铁中碳、磷和硫含量均在要求范围内。  相似文献   

11.
红土镍矿深度还原-磁选富集镍铁工艺研究   总被引:1,自引:0,他引:1  
对品位低、富集困难的红土镍矿进行了深度还原-磁选工艺方案的研究,深入探讨了还原温度、还原时间、配碳系数、料层厚度、配煤粒度、矿石粒度对深度还原-磁选的影响,得出在还原温度1 275 ℃,还原时间60 min,配碳系数3,料层厚度20 mm,还原煤粒度-1.5 mm,矿石粒度-2 mm条件下还原的红土镍矿,经过磁选可得到镍、铁品位分别为4.59%和25.12%的镍铁产品,据此得出深度还原-磁选对红土镍矿镍、铁富集有一定的作用。  相似文献   

12.
丁志广  李博 《矿冶》2018,27(1):30-36
选自云南元江的硅镁型红土镍矿在不同条件下进行甲烷低温还原,并通过磁选得到镍铁精矿。结果表明,还原温度在600~900℃,对镍和铁的品位和回收率影响很小,镍和铁的回收率随温度的变化趋势是一致的;镍和铁的品位及回收率随着还原时间的延长逐渐增加;甲烷浓度的增加使得镍和铁的品位降低,回收率则增加;在还原温度为800℃、还原时间为90 min条件下,当硫酸钠的添加量从5%增加到20%时铁的品位和回收率逐渐减小,而镍的品位和回收率则逐渐增加。用X射线衍射(XRD)和扫描电镜及能谱(SEM-EDS)分析还原过程中硅镁型红土镍矿矿相和微观结构的变化,结果表明精矿主要是镍以及铁的氧化物,并且精矿中铁的品位远远高于镍的品位。  相似文献   

13.
镍是一种重要的战略金属,随着优质硫化镍矿日益匮乏,资源丰富的红土镍矿成为重要的提镍原料。本文以红土镍矿为研究对象,甲烷为还原剂,硫化钠为添加剂,考察了还原温度、甲烷浓度、还原时间及添加剂用量对镍、铁金属化率的影响,并通过扫描电子显微镜与能量色散光谱(SEM-EDS)分析对还原产物中镍铁的聚集情况进行了研究。结果表明:在还原温度900℃、还原时间60min、甲烷浓度20%、硫化钠添加量10%的条件下,还原产物中的镍、铁金属化率可分别达到89.05%、5.10%。硫化钠的加入促进了镍铁颗粒的聚集长大,有利于镍铁颗粒与杂质的分离,同时生成的FeS抑制了铁的深度还原,实现了镍的选择性还原。  相似文献   

14.
回转窑直接还原—磁选是处理红土镍矿制备镍铁合金粉的重要工艺之一,然而通过回转窑高温还原—干式磁选所得的粗镍铁富集物中,镍、铁的品位较低,难以满足后续电炉冶炼的要求,故需要对其进行强化磨选试验。基于红土镍矿还原矿的工艺矿物学研究,考察了球磨时间、磁场强度、高压辊磨对磁选效果以及解离度的影响。结果表明:高温还原后,粗镍铁富集物中镍铁粒度差异主要受高温还原程度以及镍铁在原矿中分布不均的影响,还原矿渣相主要以橄榄石和顽火辉石为主。常规的磨矿—磁选工艺所得精矿镍和铁品位较低,金属回收率不高。开发高压辊磨工艺,可强化还原焙烧矿镍铁颗粒单体解离,显著提高金属回收率和磁选精矿品位。当还原焙烧矿在7 000 N/cm2的高压辊磨压力下进行预处理后,镍和铁回收率均提高10个百分点以上,分别高达91.17%和94.02%;镍和铁品位提高0.5和6.07个百分点,分别为6.72%和86.44%。  相似文献   

15.
为综合回收红土镍矿中的镍和赤泥中的铁,利用镍元素在还原性气氛下易与铁元素生成镍-铁精矿的特性,将云南某红土镍矿、赤泥、氯化钙和焦炭按照一定比例混匀后置入焙烧炉中进行氯化还原焙烧,焙烧矿水淬冷却后置入湿式磨矿机磨矿至一定粒度,采用湿式磁选进一步分离得到镍-铁精矿产品。结果表明:在红土镍矿和赤泥质量比为1∶1添加,氯化钙用量为红土镍矿与赤泥总质量的40%,焦炭用量为红土镍矿与赤泥总质量的10%,焙烧温度为1 100℃,焙烧时间为120 min,磁选磨矿细度为-0.056 mm占90%,磁场强度为1.28 k A/m的综合工艺条件下,获得了镍品位为5.98%、铁品位为72.37%,镍回收率为77.36%、铁回收率为62.86%的镍-铁精矿,实现了红土镍矿和赤泥中有价金属镍、铁的协同回收。  相似文献   

16.
以红土镍矿-硫酸铵混合焙烧后所得熟料为研究对象,采用水溶出的方法提取铁,系统地研究溶出温度、液固比、溶出时间、搅拌强度对铁溶出率的影响,并对铁的溶出动力学进行探讨。结果表明:在溶出温度60 ℃、溶出时间60 min、液固比2.5 GA6FA 1、搅拌强度400 r·min-1的条件下溶出时,铁的溶出率可达到99%以上;动力学分析表明,铁的溶出反应受外扩散控制,根据阿伦尼乌斯经验方程计算得到反应的表观活化能为E=7.23 kJ·mol-1,得到溶出过程动力学方程为1-(1-α)2/3=0.208 5 exp(-7 234/RT)t。  相似文献   

17.
以含Ni 1.49%, Fe 34.69%的红土镍矿为研究对象, 采用煤基直接还原法选择性还原镍铁矿物, 研究并分析了焙烧过程中还原剂和添加剂种类及用量、焙烧温度以及焙烧时间对镍铁选择性还原的影响规律。结果表明: 以宁夏烟煤为还原剂, NCS为添加剂, 1 200 ℃焙烧50 min, 磁选得到镍铁产品中含镍9.51%, 镍的回收率为84.04%, 镍铁回收率差为54.49%。通过X射线衍射(XRD)、扫描电镜(SEM)及X射线能谱分析(EDS)等测试手段分析了磁选镍铁产品中镍铁的存在形式, 结果表明: 红土镍矿直接还原过程中铁矿物大部分被还原成浮士体, 仅有少部分铁矿物被还原成金属铁, 并与镍矿物还原金属镍形成铁纹石和镍纹石, 实现了红土镍矿中镍铁的选择性还原。  相似文献   

18.
以含Ni 1.83%, Fe 15.25%的红土镍矿为研究对象, 采用3种烟煤为还原剂, 进行了红土镍矿回转窑焙烧预还原实验, 研究了煤种、用量及粒度对镍矿预还原的影响。结果表明: 增加烟煤用量可以提高镍、铁预还原率; 固定碳相同的烟煤, 挥发分越高, 镍矿还原效果越好; 增大烟煤粒度, 镍、铁的预还原率呈下降趋势, 但对于挥发分较高的烟煤, 适当增加大粒度比例, 可以促进镍矿的预还原。确定了最佳工艺条件为: 以烟煤C为还原剂, 烟煤粒度-10 mm, 镍矿/烟煤质量比为100∶5, 此条件下, 铁金属化率和镍预还原率分别为4.53%和80.64%。  相似文献   

19.
低品位红土镍矿选择性还原焙烧试验研究   总被引:9,自引:3,他引:6  
本研究采用选择性还原焙烧-氨浸-溶剂萃取-电积工艺从低品位红土镍矿中综合提取镍、钴、铁,重点介绍了采用煤作还原剂,选择性还原焙烧的试验研究。研究确定了最佳工艺条件为:采用烟煤做还原剂,还原剂加入量为矿量的10%;粒度在0~3mm,-0.074mm含量约占25%;焙烧时间20~30min;焙烧温度700~750℃。综合试验结果表明,镍、钴氨检浸出率分别为89.33%和62.47%,煤作还原剂不仅可以获得较好的经济效益,而且容易实现。  相似文献   

20.
针对澳大利亚某红土镍矿的矿物组成及比较国内外红土镍矿处理工艺,选择还原—磨选法处理该红土镍矿。固定磨选制度,研究还原温度、还原时间、还原剂配比、添加剂配比、料层厚度等因素对镍和钴直收率及其镍和钴平均品位的影响。结果表明,合适工艺条件:原料粒度-121+96mm、还原剂配比5.0%、添加剂配比5.0%,均匀混合,制成约15 mm×15 mm×20 mm球团,烘干,还原温度1 250℃,料层厚度40 mm,还原时间30 min;还原后通保护气氛冷却到室温,粉碎,进行磨选,矿浆浓度60%,球磨时间2.0 h,采用100 kA/m磁场强度磁选,磁选精矿再重选。在此工艺条件下,镍和钴的直收率分别达到88.29%和86.09%,镍钴合金粉末中镍和钴平均品位分别为9.92%和0.96%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号