首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the crystalline structure of ZrO2 on the metallic properties of Pt, when supported on WO3–ZrO2, was studied. Pt supported on tetragonal zirconia loses its metallic properties while when supported on monoclinic zirconia it presents good metallic activities. WO2,2- deposited on amorphous Zr(OH)4 before calcination generates an active material for n‐butane isomerization. The larger the fraction of the tetragonal phase of zirconia in this material, the higher the isomerization activity and the lower the metallic activity of Pt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A structured Pt(1 wt%)/ceria–zirconia/alumina catalyst and the metal-free ceria–zirconia/alumina were prepared, by dip-coating, over a cordierite monolithic support. XRD analyses and Rietveld refinements of the structural data demonstrate that in the Pt supported catalysts ceria–zirconia is present as a Ce0.6Zr0.4O2 homogeneous solid solution and that the deposition over the cordierite doesn’t produce any structural modification. Moreover no Pt sintering occurs.By comparing the XRD patterns recorded on Pt/ceria–zirconia/alumina and ceria–zirconia/alumina after three redox cycles, it results that Pt, favouring the structural reorganization of the ceria–zirconia into one cubic solid solution, prevents any CeAlO3 formation. On the contrary, such phase due to the interaction between Ce3+ and the alumina present in the washcoat is detected when redox cycles are carried out on the ceria–zirconia metal free.Transmission electron microscopy (TEM) investigations of the redox cycled Pt/ceria–zirconia/alumina catalyst detected ceria–zirconia grains with diameter between 10 and 35 nm along with highly dispersed Pt particles (2–3 nm) strongly interacting with ceria.Scanning electron microscopy (SEM) and EDX analyses, recorded on the redox cycled Pt/ceria–zirconia/alumina washcoated monolith evidence a homogeneous distribution of the active components through the channels even after redox aging.Reduction behaviour and CO oxidation activity are in good agreement with the structural modification of the solid solution induced by the redox cycles and reflect the positive effect of Pt/ceria interaction on the catalytic performances.The effect of redox aging on the NO reduction by C3H6, in lean conditions, was investigated over the Pt/ceria–zirconia/alumina monolith. The catalyst shows at low temperature (290 °C) good NO removal activity and appreciable selectivity to N2.  相似文献   

3.
A series of MoO3-ZrO2 nanocomposite oxides with MoO3 content in the range of 2-20 mol% were prepared by solution combustion method. Three different fuels namely urea, glycine and hexamethylenetetramine (HMTA) were used for the preparation of MoO3-ZrO2 oxides. For the sake of comparison, the MoO3-ZrO2 composite oxides were also prepared by impregnation of zirconia with molybdenum salt precursor and subsequent heat treatment. The synthesized nanomaterials were characterized by XRD, SEM, TEM and UV-vis spectroscopic technique. XRD study indicated selective stabilization of the tetragonal phase of zirconia in the presence of MoO3. The method of preparation was found to be crucial for the phase composition of zirconia in the composite oxide. The crystallite size and rms stain were calculated from the Fourier line shape analysis of the broadened X-ray diffraction profiles. With increase in the MoO3 content, the crystallite size of the tetragonal zirconia phase was found to be decreased. TEM study indicated the presence of small nanoparticles with size in the 5-10 nm range. UV-vis study of the composite oxide materials revealed well dispersion of the molybdenum oxide component in the form of monomer, dimers and nanoclusters in the zirconia matrix. The nature of fuel was found to be crucial in determining the morphology and shape of the particles.  相似文献   

4.
Six samples of platinum-promoted tungstated zirconia catalysts (Pt0.5/WOx/ZrO2) with W loadings between 6.5 and 12.5 wt.% are investigated using X-ray diffraction (XRD) and magnetic susceptibility measurements (4 to 350 K). Studies are also carried out on some of these samples after annealing them in air at temperatures up to 1000 °C. In the as-prepared samples, the absence of any lines due to WO3, irrespective of W loading, suggests the highly dispersed state of WO3. However, the dispersed WO3 appears to be necessary to stabilize the tetragonal phase of zirconia (t-ZrO2). Ex-situ XRD studies show that on heating the samples to 1000 °C, the fraction of m-ZrO2 (monoclinic) increases, with the simultaneous appearance of crystalline m-WO3. This leads us to infer that the dispersed WOx species are associated with t-ZrO2 only. By comparing the magnitude and the temperature variations of the magnetic susceptibility χ of the samples with those of Pt, α-PtO2, Pt3O4, WO3 and ZrO2, we infer that Pt in the as-prepared catalysts is primarily in the oxidized form, α-PtO2 and/or Pt3O4, relative magnitudes of the two oxides being dependent on the preparation procedures, thermal treatments and aging. The oxides are converted to Pt in reducing atmosphere.  相似文献   

5.
电致变色广泛应用于智能窗领域,但电致变色材料仍需外部电源驱动,将太阳能电池与电致变色材料结合起来的光电致变色器件可实现无需外部供电的智能变色调控。性能优异的变色阴极和光阳极是当下光电致变色器件的研究热点。通过水热法制备WO3-MoO3薄膜,研究其电致变色性能;通过水热法结合连续离子层沉积法制备TiO2/CdS复合薄膜,研究其光电转换性能。最后将WO3-MoO3薄膜和TiO2/CdS复合薄膜分别作为光电致变色器件的变色阴极、光阳极构建WO3/MoO3-TiO2/CdS光电致变色器件。WO3/MoO3-TiO2/CdS光电致变色器件具有较大的光学调制范围(630nm处为41.99%)、更高的着色效率(35.787%),将其作为智能窗应用在现代建筑、通行工具等领域具有重要应用价值。  相似文献   

6.
Transparent and adherent CeO2-ZrO2 thin films having film thicknesses ∼543-598 nm were spray deposited onto the conducting (fluorine doped tin oxide coated glass) substrates from a blend of equimolar concentrations of cerium nitrate hexahydrate and zirconium nitrate having different volumetric proportions (0-6 vol.% of Zr) in methanol. CeO2-ZrO2 films were polycrystalline with cubic fluorite crystal structure and the crystallinity was improved with increasing ZrO2 content. Films were highly transparent (T ∼ 92%), showing decrease in band gap energy from 3.45 eV for pristine CeO2 to 3.08-3.14 eV for CeO2-ZrO2 films. The different morphological features of the film obtained at various CeO2-ZrO2 compositions had pronounced effect on the ion storage capacity and electrochemical stability. CeO2-ZrO2 film prepared at 5 vol.% Zr concentration exhibited higher ion storage capacity of 24 mC cm−2 and electrochemical stability of 10,000 cycles in 0.5 M LiClO4 + PC electrolyte due to its film thickness (584 nm) coupled with relatively larger porosity (8%). The optically passive behavior of such CeO2-ZrO2 film (with 5 vol.% Zr) is affirmed by its negligible transmission modulation irrespective of repeated Li+ and electron insertion/extraction. The coloration efficiency of spray deposited WO3 thin film is found to enhance from 47 to 107 cm2 C−1 when CeO2-ZrO2 is coupled as a counter electrode with WO3 in an electrochromic device (ECD). These films can be used as stable ‘passive’ counter electrodes in electrochromic smart windows as they retain full transparency in both the oxidized and reduced states and ever-reported longevity.  相似文献   

7.
The performance of Pt catalysts supported on sulfated zirconia-silica with different stoichiometries is investigated in then-pentane hydroisomerization reaction. Comparatively, with respect to the Pt/SO 4 2– -SiO2 or Pt/SO 4 2– -ZrO2 catalysts, the sulfated mixed oxides show an enhancement of the catalytic activity that increases with the content of ZrO2, reaching its maximum at values between 10 and 15 wt% zirconia. The characterization of the samples reveals that at this stoichiometry occurs the highest H2-consumption of the samples as well as the top value of strong Brónsted acid sites according to the TPD-H2 and FTIR measurements of absorbed pyridine respectively. That is, close to these percents of zirconia content one has a compound that is homogeneously mixed and above those values the segregations of the single oxides occur as verified by X-ray diffraction characterization.  相似文献   

8.
Trimerization of isobutene to produce isobutene trimers has been investigated over WOx/ZrO2 catalysts that were obtained by wet-impregnation and successive calcination at high temperatures. Very stable isobutene conversion and high selectivity for trimers are attained over a WOx/ZrO2 catalyst obtained by calcination at 700 °C. From the XRD study it can be understood that tetragonal ZrO2 is beneficial for stable performance; however, monoclinic ZrO2 is not good for trimerization. Nitrogen adsorption and FTIR experiments suggest that amorphous WOx/ZrO2 is inefficient catalyst even though it has high surface area and high concentration of acid sites. The observed performance with the increased selectivity and stable conversion demonstrates that a WOx/ZrO2 having tetragonal zirconia, even with decreased porosity and acid sites, is one of the best catalysts to exhibit stable and high conversion, high selectivity for trimers and facile regeneration.  相似文献   

9.
In this work results on dynamic corrosion studies of fused cast Al2O3-SiO2-ZrO2 and isostatically pressed and sintered Cr2O3-based refractories by two crystalline (transparent) frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C.Microstructural and mineralogical analyses of selected areas from the corroded regions of the studied refractories were performed by reflected light optical microscopy and scanning electron microscopy with analysis by X-ray dispersive energy.Significant differences between the corrosion mechanisms acting in the two types of materials were found. In the fused cast Al2O3-SiO2-ZrO2 specimens corrosion took place by the dissolution of alumina and zirconia in the frit and in the glass formed by the reaction between the frit and the refractory. In the Cr2O3-based materials the corrosion process was controlled by the capillar penetration of the molten frit through the open pores. The reaction between the ZnO from the frits and Cr2O3 led to the formation of spinel (ZnCr2O4), a high-melting point bonding phase that retarded the frit penetration. Results are discussed using the relevant phase equilibrium diagrams.  相似文献   

10.
The interaction of methane at various temperatures with NO x species formed by room temperature adsorption of NO + O2 mixture on tungstated zirconia (18.6 wt.% WO3) and palladium(II)-promoted tungstated zirconia (0.1 wt.% Pd) has been investigated using in situ FT-IR spectroscopy. A mechanism for the reduction of NO over the Pd-promoted tungstated zirconia is proposed, which involves a step consisting of thermal decomposition of the nitromethane to adsorbed NO and formates through the intermediacy of cis-methyl nitrite. The HCOO formed acts as a reductant of the adsorbed NO producing nitrogen.  相似文献   

11.
Ga-promoted tungstated zirconia (GWZ) was prepared by a slurry impregnation method. The textural properties as well as the acidities of the Ga-promoted catalysts were characterized by X-ray powder diffraction (XRD), N2 adsorption, NH3 temperature-programmed desorption (NH3 TPD), microcalorimetry and H2 temperature-programmed reduction (H2 TPR). The catalytic behavior of GWZ for n-butane isomerization was studied in the presence of hydrogen. In comparison to tungstated zirconia (WZ), the catalytic activity of the Ga-promoted catalyst was greatly improved. The reason proposed for the higher activity of the Ga-promoted catalysts was that Ga enhances the oxidizing ability of the catalysts.  相似文献   

12.
Hydrogen adsorption was studied for Pt/SO4 2--ZrO2 samples modified with Na addition, pyridine preadsorption, and water preadsorption to elucidate the relation between the rate and capacity of hydrogen adsorption and the surface state. The surface states were monitored by XRD, IR, ammonia TPD, and measurement of catalytic activity for cyclohexane isomerization. All the modifications suppressed the hydrogen uptake. It was suggested that Lewis acid sites promote the hydrogen uptake by stabilizing spiltover hydrogen atoms.  相似文献   

13.
Three-dimensional flower-like Bi2WO6 microspheres with the diameter of about 4 μm were prepared by a facile hydrothermal method using bismuth nitrate pentahydrate and sodium tungstate dihydrate as raw materials. A novel Ag-modified Bi2WO6 was synthesized through a simple and practical photoreduction process. The UV–vis diffuse reflectance spectra indicate that the Ag/Bi2WO6 samples have a significantly enhanced optical absorption in the visible light region than that of pure Bi2WO6 microspheres due to the surface plasmon resonance (SPR) of Ag nanoparticles on the surface of pure Bi2WO6. The photocatalytic activities of the as-prepared samples were evaluated by the decolorization of rhodamine B under simulated sun-light irradiation. The results reveal that the photocatalytic activities of the Ag/Bi2WO6 samples increase first and then decrease with increasing amount of loading Ag and the 1.0 wt% Ag-loaded Bi2WO6 sample exhibits the best photocatalytic activity compared with the other samples. The enhanced photocatalytic activity could be attributed to the synergistic effect of the strong SPR and the effective separation of photogenerated electrons and holes caused by Ag nanoparticles.  相似文献   

14.
15.
An Al2O3-ZrO2 support was prepared by grafting a zirconium precursor onto the surface of commercial γ-Al2O3. A physical mixture of Al2O3-ZrO2 was also prepared for the purpose of comparison. Ni/Al2O3-ZrO2 catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect ZrO2 and preparation method of Al2O3-ZrO2 on the performance of supported nickel catalysts in the steam reforming of LNG was investigated. The Al2O3-ZrO2 prepared by a grafting method was more efficient as a support for nickel catalyst than the physical mixture of Al2O3-ZrO2 in the hydrogen production by steam reforming of LNG. The well-developed tetragonal phase of ZrO2 and the high dispersion of ZrO2 on the surface of γ-Al2O3 were responsible for the enhanced catalytic performance of Ni/Al2O3-ZrO2 prepared by way of a grafting method.  相似文献   

16.
Shan Xu 《Fuel》2005,84(5):563-567
Nickel catalysts over the CeO2-ZrO2 solid solution were successfully prepared by the co-precipitation method for partial oxidation of methane. The structures of the catalysts were systematically examined by N2 adsorption/desorption, CO chemisorption, X-ray diffraction (XRD) and H2-TPR techniques. The catalytic performance and carbon deposition were investigated for partial oxidation of methane as well. The results showed that the Ni/CeO2-ZrO2 catalysts had a large BET area and fine Ni dispersion. By the co-precipitation method, Ni and CeO2-ZrO2 solid solution had strong interaction confirmed by the H2-TPR analysis. The Ni/CeO2-ZrO2 catalysts showed high activity and stability and the Ni/Ce0.25Zr0.75O2 exhibited the best activity and coking resistance among these catalysts. The catalytic activities and coking resistant behaviors of catalysts were affected by the surface and structural properties of the catalysts.  相似文献   

17.
This research investigated how the physical and chemical properties of Pt/TiO2-based catalysts with high activity in SCR reaction are affected by the preparation conditions (type of TiO2, Pt content and calcination temperature) using XRD, BET and TPR analysis. The catalyst preparation conditions that achieve optimum reactivity were identified by examination of how the physical and chemical properties relate to catalytic activity. According to the results, Pt content over 2 wt% causes a phenomenon in which Pt agglomeration increases linearly according to the surface area of the limited support. However, Pt content over 3 wt% showed an increase in reducibility in the low temperature region that is proportional to the absolute amount of Pt has increased. Moreover, although increased calcination temperature did not result in phase transition of the TiO2 support, it did lead to reduction of the surface area by increasing crystallinity and sintering of Pt.  相似文献   

18.
A series of AlSBA-15 catalysts with different pore size and different Si/Al ratio were prepared and characterized by N2 adsorption and NH3-temperature programmed desorption (NH3-TPD) methods. Their catalytic behaviors for the alkylation of hydroquinone with tert-butanol were studied and compared with that of HZSM-5, HY, HAlMCM-41. It is found that the catalytic activity correlates well with the amount of medium-strong acid sites on the surface of the catalysts, and the selectivity towards 2-tert-Butylhydroquinone has some connection with the pore size of the catalysts. The reusability of the catalyst depends on its hydrothermal stability, which needs to be improved for the AlSBA-15 catalysts.  相似文献   

19.
The catalytic behavior of the cubic (70%) Pt nanoparticles supported on alumina, with an average diameter of 132nm, was investigated for NO/CH4 reaction. It was observed that the formation of reaction products (N2O, CO and NH3) is related to the size as well to the shape (facet) of the Pt nanoparticles.  相似文献   

20.
The synthesis of ZrW2O8 from different kinds of mixtures containing ZrO2–WO3, ZrO(NO3)2·2H2O–WO3, ZrCl2O·8H2O–WO3, and ZrO2–(NH4)10W12O41·5H2O was investigated, and the kinetics was analyzed using JMA equation. It was found that ZrO(NO3)2·2H2O, ZrCl2O·8H2O H2O and (NH4)10W12O41·5H2O that were used as inorganic precursors formed ZrO2 and WO3 after firing above 500 °C. The content of ZrW2O8 obtained by firing the mixtures is influenced by the kinds of precursors as well as mixing methods. The formation rate of ZrW2O8 depends on homogeneity related to mixing methods as well as the particle size of starting powders. Phase-pure ZrW2O8 is obtained from the ZrCl2O·8H2O–WO3 mixtures at 1200 °C for 4 h, which is much shorter time than in the case of conventional ZrO2–WO3 mixtures. In the reaction kinetics of ZrO2–WO3 system, the Avrami exponent (n) is ∼0.5 above 1175 °C, indicating that the reaction is controlled by the diffusion-controlled reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号