首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热敏感点优化选取是热误差建模过程中的关键问题,所选取的热敏感点优劣将直接影响热误差模型的精确性和鲁棒性。提出一种灰色关联分析(GRA)和主成分分析(PCA)结合的机床主轴系统热敏感点优化方法,采用GRA筛选对热误差影响较大的温度测点,机床主轴不同位置处的多个测点温度值以及主轴在对应温度下产生的热漂移作为分析数据,通过计算温度变量与热漂移之间的灰色关联度,得到其灰色综合关联度矩阵,确定二者相关性后初选温度变量;根据PCA将高度相关的温度数据简化为较少的相互独立的主成分,将其作为后续热误差模型的输入,从而实现热敏感点优化。将该方法应用于数控机床主轴系统,优化完成的热敏感点数据作为主轴热误差模型的输入变量。结果表明:将优化所得热敏感点作为BP热误差模型输入,预测所得热误差与实际热误差的平均残差为0.83 μm,低于仅采用灰色关联分析法优化热敏感点的5.18 μm及仅采用主成分分析法优化热敏感点的4.57 μm,机床z轴热变形预测精度得到显著提高,有利于改善加工精度。  相似文献   

2.
数控机床主轴热误差是影响机床加工精度的主要因素之一,主轴热误差温度测点优化对于准确建立机床主轴热误差模型、提高机床精度具有十分重要的意义。提出一种基于模糊聚类与灰色理论的机床测温点优化方法,通过对主轴测温点进行模糊聚类分析,根据Xie-Beni有效性指标评定,将温度点归为几类,然后通过对模糊聚类后的测温点与主轴热误差进行灰色相关性分析,实现机床主轴温度测点的进一步优化。试验结果验证了该方法的可行性与有效性。  相似文献   

3.
针对影响机床热误差建模的机床温度场分布问题,提出了优化热关键点的新方法.借助于灰色系统理论的关联度分析方法,根据现场测得的统计数据序列,建立了灰关联分析模型,通过计算布置于机床上各个温度布点的温度传感器的温度采样序列值同机床定位误差之间的绝对灰色关联度值,最终从32个温度测点当中选择了4个点用于建立热误差补偿模型.最后基于四个测温关键点建模对Z轴的定位误差进行了补偿实验,结果证明补偿效果较好,所提出的热误差测点优化研究可以有效提高热误差模型的鲁棒性.  相似文献   

4.
为探究数控机床主轴温度场信息与主轴热误差之间的非线性映射关系,提出一种基于人工蜂群优化算法(ABC)与广义回归神经网络的主轴热误差预测模型。首先,使用热成像技术布置温度传感器,并利用K-medoids算法对温度测点进行聚类分组,使用灰色关联度分析方法计算温度与主轴热误差之间的相关程度,进而提取出最佳热敏感点;其次,引入调节因子优化ABC算法的寻优过程,使用改进后的ABC网络确定GRNN网络的最佳参数及光滑因子;最后,以三轴数控加工中心为研究对象,进行温度数据与热误差数据的采集,建立基于ABC-GRNN热误差预测模型并与优化前进行比较。热误差实验结果表明,K-medoids算法与灰色关联分析相结合,有效避免了温度测点之间的多重共线性;ABC-GRNN模型可以更准确地预测出主轴各项误差值。  相似文献   

5.
为了减小机床热误差温度测点数的不确定性、测点之间的多重共线性对预测模型精度及稳健性的影响,提出了一种综合系统聚类(SC)与灰色关联(GC)的测点优化及误差建模方法。以数控机床热误差实验为依据,基于系统聚类、灰色关联分析原理和文中提出的测点筛选原则,将温度测点的数量由20个减少为4个,建立了热误差温度测点优化模型并进行了优化计算。结果显示,此方法能有效降低测点之间的多重共线性,有利于优化模型的预测精度及泛化性能的均衡。  相似文献   

6.
在数控机床热误差补偿技术中,温度测点的选择与优化是一个难点。通过热成像仪获得了某立式铣床的温度场,根据温度场的分布情况,在机床上布置多个温度传感器。根据测量的温度和热变形数据,采用FCM模糊聚类和相关分析对温度测点进行了分组优化,然后利用多元回归分析建立了关键测温点的热误差模型,并通过实验进行了验证。结果表明:该方法能有效减少测温点,测温点由13个减少到5个,所建立模型预测精度较好,Y,Z方向热误差由50μm减少到9μm以内。  相似文献   

7.
在数控机床热误差补偿技术中,温度测点的选择与优化是一个难点。文章采用逐步线性回归方法对核电轮槽铣床主轴箱的温度测点进行优化与建模。首先利用瞬态热-结构耦合分析了主轴箱在粗加工时的温升和热变形,再通过逐步线性回归方法对温度测点进行优化,利用优化后的温度测点建立了主轴X,Y,Z三个方向的热误差模型,最后对主轴箱在精加工运行时对所建立的模型进行了验证,结果表明:该方法不仅可以有效减小温度测点数目,还能保证模型的预测精度,三个方向的热误差均减小到5μm以下。  相似文献   

8.
何郑曦  荣茂林 《机床与液压》2021,49(17):117-122
针对机床热误差补偿技术中热态特性建模与热关键点辨识困难问题,提出一套较完善的主轴热态特性建模方法与热关键点快速辨识技术。考虑主轴系统温度与热变形等因素,建立主轴热态特性分析模型,结果表明:模型预测值与某精密卧式加工中心的热误差实测量值之间的误差均在20%以内,说明了所提建模方法的正确性。将模型输出结果用于主轴热关键点辨识,根据12个测点的热传递函数值筛选出6个热关键点;利用6个关键点的数据,基于BP神经网络建立一种主轴热误差预测模型;对比BP神经网络预测的输出值与热态特性模型的输出值,结果表明:最大误差为-0.060 36μm、最大相对误差为-0.200 6%,验证了所提热关键点辨识方法的有效性。  相似文献   

9.
针对影响机床热误差建模的温度场分布问题,提出一种热模态分析方法,对机床热误差建模温度测点进行优化选择。以数控机床主轴温度场分析为例,利用热模态方法得到主轴各模态的时间常数、温度场及热变形模态形状,从而确定温度测点的最优位置。并通过实验验证了所建立模型的准确性与鲁棒性。  相似文献   

10.
为建立更加准确的电主轴热误差预测模型,以某台电主轴为实验对象,测得10 000 r/min转速时的温升和热伸长数据。利用模糊聚类结合灰色关联度分析(FCM-GRA)理论,优化温度测点。采用鲸鱼优化算法(WOA)和支持向量回归(SVR)相结合的方法,建立电主轴的热误差预测模型。对比多元线性回归、SVR和WOA-SVR预测模型预测效果。结果表明:鲸鱼算法优化后的支持向量回归预测模型可以更有效预测电主轴的热误差,将拟合误差最大值降低到3.72μm,均方根误差降低至1.33μm,验证了所提方法的可行性。  相似文献   

11.
为了降低机床主轴运行产生的热误差,建立混合算法优化BP神经网络预测模型,通过实验验证预测精度。分析模拟退火算法和粒子群算法的不足,采用模拟退火算法耦合粒子群算法,给出混合算法寻优步骤。引用BP神经网络结构,构造机床主轴热误差预测模型,采用混合算法优化BP神经网络预测模型。采用实验验证主轴热误差预测精度,并与优化前进行比较和分析。结果显示:采用混合算法优化后的BP神经网络预测模型,其Y轴方向产生的最大误差值从7.3μm降低到2.3μm;而Z轴方向产生的最大误差值从7.5μm降低到2.6μm。同时,机床主轴整体误差波动幅度较小。采用混合算法优化BP神经网络预测模型,用于机床主轴热误差在线补偿,提高了加工精度。  相似文献   

12.
热误差作为制约数控机床加工精度的关键因素,在重型数控机床上表现得尤为明显。以重型落地镗铣床为例,根据热误差测量试验数据,分析重型数控机床温度场特性,并基于兼顾相关系数和欧式距离的系统聚类准则,对温度测点系统进行优化,以减小温度测点间共线性。通过优化温度测点,采用多元线性回归分析,建立重型数控机床热误差预测模型。由现场试验可知,建立的热误差预测模型可将均方根误差控制在10μm以内,有效地提高了热误差预测精度。  相似文献   

13.
为了提高数控机床热误差模型的预测精度,以某型号立式加工中心为实验对象,采用模糊聚类与灰色综合关联度相结合的方法对机床测温点进行优化,将测温点从8个减少到3个。利用遗传算法(GA)优化的Elman神经网络建立了主轴热漂移误差预测模型,通过实例比较了GA-Elman神经网络模型与普通Elman神经网络模型的预测效果。结果表明,与普通Elman神经网络所建的预测模型相比,GA-Elman神经网络模型对主轴轴向热漂移误差的预测精度较高,残差较小,网络的泛化能力较好。  相似文献   

14.
针对VMC1165B立式加工中心,进行机床热特性及温度场分析,基于试验数据,避免进行热机制分析和计算温度场边界条件。采用模糊聚类结合Pearson相关系数法选出4个稳健性温度敏感点建立热误差模型,验证模型预测性能,并与模糊聚类结合灰色关联度选出的非稳健性温度敏感点热误差预测模型对比。结果表明:稳健性温度敏感点热误差预测模型的机床 X 向最大残差下降了25.44%, Y 向最大残差、平均绝对误差和均方差分别下降了25%、23.03%和33.25%。  相似文献   

15.
为了提高精密研抛数控机床的加工精度,对研抛数控机床的几何误差与热误差进行了研究与分析,发现随着机床相关部件温度的不断升高直至热稳态,机床的定位误差也不断增加到稳态值,验证了几何误差和热误差是精密及超精密加工误差的主要来源。综合考虑了机床复合误差的不同特点并进行误差分离,提出了基于牛顿插值算法和最小二乘法的几何与热复合误差建模方法,依据复合误差模型进行补偿实验,补偿后机床冷态下定位误差值从3.5μm降至1.2μm,误差降低了65.7%,热稳态后定位误差值从12.2μm降至1.9μm,误差降低了84.4%,实验结果证明复合误差模型计算简单、预测精度高、具有较好的鲁棒性,为提高机床的加工精度提供了理论与实践依据。  相似文献   

16.
在分析了国内外热误差建模方法的基础上,提出了一种基于改进的模糊C均值聚类算法,从而基于多元线性回归理论建立教学型复合机床主轴热误差模型。使用温度传感器对机床主轴不同位置进行温度测量,并采用改进的模糊C均值聚类法对所测量数据进行分组,筛选出每组的最优温度值进行迭代。采用优选出的温度数据,采用多元线性回归建模法对机床主轴热误差进行预测建模。通过实验验证多元线性回归理论创建的预测建模分析可得:补偿后,教学型复合机床的主轴Y、Z方向受温度影响的热误差降低到了5.4μm以内,通过对改进的模糊C均值聚类法和多元线性回归模型相结合,使机床主轴在Y、Z方向误差有所降低,能更好的预测主轴热误差,从而提高机床加工精度。  相似文献   

17.
为了减小主轴季节性热误差影响,提高机床的加工精度,提出了基于针对机床热源进行SOM神经网络预聚类后的支持向量回归机的主轴热误差综合模型。针对一台型号为HTM40100h的车铣复合中心,对主轴的关键温度测点进行了内外热源的划分,并在冬夏两个季节对所有测温点温度和热误差数据进行采集,将外部热源温度数据作为SOM网络的输入变量进行季节性聚类,聚类后的外部热源温度数据连同同时刻的内部热源温度数据一起作为不同季节支持向量回归机模型的输入变量,得到热误差拟合值。将通过聚类预处理的方法与未经聚类的方法进行了对比试验,结果表明:该综合预测模型在冬夏两个季节均获得了较高的建模精度和鲁棒性。  相似文献   

18.
针对机床热误差补偿技术中预测模型建立的问题,综合多元线性回归及BP神经网络的优点,提出一种机床热误差建模新方法。由不同样本数据建立若干多元线性回归模型,依据统计学理论筛选出预测精度及鲁棒性高的回归模型,预处理后将其结果输入到BP神经网络中进行非线性拟合建模,在不断调节网络权值及对神经网络训练的基础上,最终建立热误差补偿模型。在卧式加工中心上进行试验验证,主轴Z向最大热误差从17.895μm减小到1.654μm。  相似文献   

19.
为消除数控微磨床热误差对加工精度的影响,提出了基于多元回归理论的数控微磨床热误差在线补偿方法。针对自行设计的数控微磨床建立热误差模型,采用TC-3型温度测试仪和激光干涉仪分别获取微磨床热敏感点的温度数据与刀具主轴变形量;根据多元回归理论,通过计算判定系数和残差平方和来选取热误差模型的最佳变量组合。实验结果表明:运用多元回归理论,以最佳变量组合来建模,能够显著提高热误差建模精度。微磨床刀具主轴的径向热误差由8μm减少至1μm以内。  相似文献   

20.
单一工况条件下数控机床主轴热误差模型无法准确预测其它工况下的热误差。通过研究分析支持向量机回归的算法和参数的关系,提出一种经过遗传算法(GA)在多工况条件下优化的支持向量机(SVM)的建模方法。以一台数控车床为研究对象,进行热误差测量实验,利用电涡流位移传感器和温度传感器同步测量机床主轴两个方向热误差和温度变化数值,获取两种工况的建模数据。运用遗传算法对SVM的惩罚函数、核函数参数和不敏感损失函数进行多工况条件下的优化选择,建立机床主轴热误差补偿模型。通过热误差建模实验验证,该方法在工况一的残差为0.838μm,工况二的残差为0.653μm,在保持较高预测精度的同时,能在两种工况下进行有效的热误差预测,使热误差补偿更适合实际加工环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号