首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
微铣削是一种加工微小零件和微小特征的高精、高效加工方法,为探究单晶铝微铣削表面质量,采用直径为0.4mm的硬质合金立铣刀,对单晶铝进行三因素五水平微铣削正交试验,通过极差分析找出影响表面质量的主次因素,即主轴转速的影响最大,铣削深度其次,进给速度最小,探讨了切削参数对单晶铝微铣削表面质量的影响规律;优化获得理想的工艺参数组合,即主轴转速为36000r/min,铣削深度为10μm,进给速度为80μm/s,此时即表面粗糙度最小,为0.782μm。研究结果为单晶材料的微铣削加工提供一定的理论和试验依据。  相似文献   

2.
以6061铝合金为研究对象,在高速加工中心上对6061铝合金进行铣削加工,对加工后的工件表面粗糙度、材料去除率以及铣削力进行相应的测量和分析,通过切削加工实验的方法针对不同工艺参数组合方式以及不同刀具材料对加工效率和加工质量的影响情况展开研究,从而确定最优工艺参数组合以及最佳刀具材料。研究结果表明:硬质合金刀具的切削性能优于TIALN涂层刀具,当主轴转速为8000r/min,进给速度为1600mm/min,切削深度为0.2mm时,工件的表面质量最好,表面粗糙度Ra可达到0.14μm,同时材料去除率可以达到46310mm3/min,当主轴转速为8000r/min,进给速度为1600mm/min,切削深度为0.05mm时,铣削力分别是10N(X),11N(Y),7N(Z),该工艺参数组合可以提高刀具耐用度。  相似文献   

3.
以覆膜砂砂坯为研究对象,进行了覆膜砂砂坯铣削加工实验,研究了主轴转速、进给速度、铣削深度、铣削宽度等工艺参数对砂型表面粗糙度Ra的影响,并采用正交实验和极差分析了各个因素对加工砂型表面品质的影响。结果表明,铣削工艺参数对加工后砂型表面品质有显著的影响。砂型表面粗糙度随着进给速度和铣削深度增加而增加,随着主轴转速的增加而减少,铣削宽度对其影响不明显;影响程度大小顺序为:铣削深度进给速度主轴转速铣削宽度,通过降低铣削深度和进给速度,提高主轴转速,可提高砂型加工表面品质。  相似文献   

4.
赵旭  巩亚东  张伟健  韩冰 《表面技术》2021,50(5):329-339
目的 针对高体积分数SiCp/Al加工表面缺陷复杂多样,提出其表面质量综合评价方法,研究磨削参数对SiCp/Al磨削表面质量的耦合影响规律,优化加工工艺.方法 基于SiCp/Al磨削加工表面缺陷,提出粗糙度综合指标SR为主、表面形貌为辅的表面质量综合评价方法,采用全因子试验方法分析低、高进给速度工况下主轴转速和磨削深度对表面质量的影响规律.借助Abaqus软件揭示SiCp/Al磨削表面形成机理,解释试验结果.结果 小切深(ap为5μm和20μm)时,粗糙度综合指标SR随着主轴转速ns的增加而先递减再增大;大切深(ap为40μm和80μm)时,SR随着ns的递增而递减或近似递减.低主轴转速(ns为2000 r/min和4000 r/min)时,SR随着磨削深度ap的增加(ap由5μm递增到80μm)而先增大再减小而后又增加;高主轴转速(ns为6000 r/min和8000 r/min)时,SR随着ap的增加而先增加再低进给量时减小或高进给量时增加.获得最佳磨削表面质量的最优磨削参数是:进给速度vf=50 mm/min,磨削深度ap=5μm,主轴转速ns=6000 r/min.兼顾磨削效率和表面质量的最优磨削参数是:vf=50 mm/min,ap=80μm,ns=8000 r/min.结论 表面质量综合评价方法的可靠性较高,主轴转速和磨削深度对表面质量的影响具有耦合性,减小磨削深度、采用适当主轴转速有助于改善表面质量.  相似文献   

5.
采用热丝CVD法制备纳米金刚石薄膜涂层刀具,利用场发射扫描电子显微镜表征薄膜的表面形貌,并用已制备的CVD金刚石涂层刀具,在无润滑干切条件下高速铣削7075铝合金工件,对其精铣工艺参数进行单因素及正交试验,探索精铣后工件的表面粗糙度变化规律并进行工艺参数优化。结果表明:随着主轴转速n从5000 r/min提高到8000 r/min, 工件平均表面粗糙度在逐级缓慢降低;当进给速度vf在1000~7000 mm/min范围内,随着vf提高工件平均表面粗糙度快速增大,在vf为7000 mm/min时,其值达1.790 μm;当轴向切削深度ap在0.1~0.4 mm范围内,随着ap提高,工件平均表面粗糙度逐步增大,但ap在0.2 mm之后其增大趋势变缓。对7075铝合金工件精铣表面粗糙度影响最大的是vf,其次为n,ap的影响最弱;其精铣的最优参数组合是ap=0.2 mm、vf=1 000 mm/min、n=8 000 r/min,精铣后的表面粗糙度平均值为0.516 μm。选用纳米金刚石薄膜涂层刀具精铣7075铝合金时,为得到较低的表面粗糙度,应选择高主轴转速、低进给速度、合适的轴向切削深度。   相似文献   

6.
谢英星 《机床与液压》2014,42(15):150-153
采用单因素试验法和正交试验法,在高速加工中心上对模具钢3Cr2NiMo进行切削试验,通过改变影响加工过程的切削参数:主轴转速、进给速度、轴向切削深度和径向切削深度,研究了影响工件加工表面粗糙度值程度的因素。结果表明:增大机床的主轴转速,粗糙度值显著降低,而增大进给速度、轴向铣削深度,粗糙度值增大,但增大的幅度不同,径向铣削深度的影响不明显。  相似文献   

7.
K9玻璃由于具有优异的性能,在航空航天、汽车、光学精密仪器、电子信息等现代高科技领域得到了广泛应用,但其在塑性和硬度之间差距巨大,使得传统机械加工容易出现亚表面损伤等现象,表面质量难以满足要求。建立超声铣削动力学模型,采用多因素法检测并分析了不同主轴转速、铣削速度和铣削深度时纵扭复合超声铣削与普通铣削加工K9玻璃表面粗糙度与表面形貌,得到了影响加工表面质量的规律及机制。研究发现:主轴转速为3 000 r/min、铣削深度为02 mm时,表面质量最好;K9玻璃的表面质量随铣削速度的加快而下降。采用纵扭复合超声振动铣削提高了K9玻璃的表面质量和加工效率,并为K9玻璃纵扭超声铣削加工提供了优化的工艺参数。  相似文献   

8.
SiCp/Al复合材料具有优异的性能,在航天航空、光学行业、汽车工业等高科技领域得到了广泛应用,但它在塑性和硬度之间差距巨大,使得超精密加工显得非常困难。建立超声铣削动力学模型,采用单因素法检测分析了SiCp/Al复合材料在不同主轴转速、铣削速度和铣削深度下的表面粗糙度与表面形貌,建模仿真了纵扭复合超声振动刀刃铣削轨迹,得到了影响加工表面质量规律及机制。研究发现主轴转速为3000 r/min、铣削速度为180 m/min时,表面粗糙度值最小;材料表面质量随铣削深度的增加而下降。为SiCp/Al复合材料铣削加工提供了合理工艺参数,提高了加工效率,降低了刀具磨损,延长了刀具使用寿命。  相似文献   

9.
Al6061铣削精加工表层残余应力分布试验研究   总被引:1,自引:1,他引:0  
目的探索铣削精加工工艺参数对Al6061工件表层残余应力的影响,提高零件的疲劳寿命。方法设计研究了只改变其中一个参数,其他参数不变的情况下,铣削精加工Al6061工件表层残余应力的分布情况。结果在平行于铣削进给方向(x direction)和垂直于铣削进给方向(y direction),所得表层残余应力均为压应力。随主轴转速的增大,所得工件表面残余压应力减小,残余应力最大值深度增加。当改变每齿进给时,随着每齿进给的增加,工件表面残余压应力减小,残余应力最大值出现在表面;随着铣削深度的增加,工件表面残余压应力减小,对残余应力最大值影响不大;随着铣削宽度的增加,工件表面残余压应力先减小后增大,残余应力最大值从表面向深度层移动。当主轴转速为10 000 r/min、每齿进给为0.015 mm、铣削深度为0.5 mm、铣削宽度为11.8 mm时,对表层残余应力的影响最大,影响层深约245μm,残余压应力最大值为147.67 MPa,其峰值深度约为80μm。结论 Al6061铣削精加工时,如果要获得较大的表面残余压应力,应该选择主轴转速、每齿进给、铣削深度、铣削宽度都较小。在切深方向,如果要获得较大残余压应力,应该选择较大的主轴转速和铣削宽度、较小的每齿进给、合适的铣削深度。  相似文献   

10.
主要研究了挤压速度和挤压温度两个工艺参数对AZ31B镁合金工件成形过程中表面粗糙度和显微硬度的影响。结果表明:当挤压速度小于2.8 mm/s时,提高挤压速度能降低镁合金的表面粗糙度数值,改善表面质量;当速度超过3.0 mm/s时,反而会提高粗糙度数值,对表面质量产生负面影响。提高挤压温度也能降低镁合金的表面粗糙度数值,当挤压温度到达360℃后,表面粗糙度不再发生变化,表面质量趋于稳定。当挤压速度小于2.4 mm/s时,提高挤压速度能提高镁合金的显微硬度,改善镁合金的表面质量;但速度超过2.4 mm/s后,显微硬度迅速降低,造成表面质量急剧下降。当挤压温度小于360℃时,提高挤压温度也能提高镁合金的显微硬度,温度超过360℃后,显微硬度明显降低。  相似文献   

11.
针对钛合金在NaNO3电解液下易钝化而导致电解加工中断的问题,提出了钛合金微铣削辅助电解复合加工方法,首先设计了微铣削辅助电解复合加工工具,建立了复合加工深度轮廓的数学模型,并通过单因素试验研究了不同进给速度、主轴转速、加工电压对复合加工的影响。结果表明:这些参数中对复合加工深度和材料去除率影响最大的是进给速度,对轮廓定域性影响最大的是主轴转速。在进给速度3 mm/min、加工电压24 V、主轴转速2 000 r/min的试验参数下,加工获得的表面质量效果较好,加工深度轮廓试验曲线与数学模型达到了较好的吻合。  相似文献   

12.
针对铁氧体的高精度环形金刚石线锯切割工艺参数优化问题,以其切割后的面形精度和表面粗糙度作为评价指标,采用正交试验法研究主轴转速、进给速度和张紧力等工艺参数对切割表面质量的影响,并基于灰色理论对多工艺目标进行数据分析和综合评判,得到工艺参数组合优化方案为:主轴转速,1 000 r/min;进给速度,1.0 mm/min;张紧力,90 N。切割试验结果表明:用优化后的参数组合得到的面形精度PV为7.37μm、表面粗糙度Ra为0.882μm,加工表面质量提高,验证了铁氧体切割工艺参数优化的有效性和实用性。  相似文献   

13.
利用有限元软件仿真及试验研究的方法研究铣削工艺参数对AZ31B镁合金表面质量的影响。结果表明:在选取的加工参数范围内,对表层残余压应力及表面硬度的影响能力由大到小依次为:铣削速度>铣削深度>每齿进给量>冷却方式,表层残余压应力随着铣削速度的增大而减小,随着铣削深度、每齿进给量的增大而增大,在干铣削的方式下残余压应力最小;表面硬度随着铣削速度、铣削深度、每齿进给量的增大而增大,使用切削液铣削能得到更大表面硬度;对表面粗糙度的影响能力由大到小依次为:铣削深度>每齿进给量>铣削速度>冷却方式,表面粗糙度随着铣削速度的增大先增加后减小,随着铣削深度、每齿进给量的增大而增加,使用切削液铣削时表面粗糙度更小。  相似文献   

14.
针对子午线轮胎模具侧板加工过程中存在加工能耗高、表面质量差的问题,以45号钢子午线轮胎模具侧板为研究对象进行微铣削试验,着重研究主轴转速、每齿进给量、切削深度3个切削参数对切削比能和表面粗糙度的影响。通过试验数据样本训练和检测基于遗传算法改进的多目标BP神经网络,实现不同切削参数组合下切削比能和表面粗糙度的多目标预测;利用NSGA-Ⅱ对切削参数进行多目标优化,获得了20组Pateto解。预测和优化结果表明:提高主轴转速既有利于降低切削比能又有利于改善表面粗糙度,而增大每齿进给量和切削深度会降低切削比能但会增大表面粗糙度;切削比能和表面粗糙度相互抑制,不能同时改善。在兼顾切削比能和表面粗糙度的情况下,较优参数为主轴转速19 370~20 000 r/min、每齿进给量0.055~0.06 mm/齿、切削深度0.4~0.456 mm。  相似文献   

15.
针对第三代单晶高温合金DD9磨削烧伤问题,设计三因素五水平实验,从表面形貌、显微硬度和显微组织等角度出发,研究磨削工艺参数对烧伤的影响规律。结果表明:当工件进给速度小于等于250 mm/min时,磨削表面粗糙度Ra在0.8μm左右小幅度变化,表面质量较好;当工件进给速度大于250 mm/min,磨削深度超过1.0 mm后,磨削区域温度急剧上升,磨削纹路被破坏,出现涂覆、凹坑等磨削缺陷,工件表面发生烧伤;DD9合金缓进给磨削工件表面及表层均表现为加工硬化,显微硬度为400~600 HV,硬化层深度在50~110μm,塑性变形层厚度为1~10μm。推荐的DD9磨削工艺参数组合为:砂轮线速度vs=20 m/s,进给速度vw=250 mm/min,磨削深度ap=0.6 mm。  相似文献   

16.
利用搅拌摩擦加工技术,研究了不同工艺对AZ31镁合金显微组织和拉伸性能的影响。结果表明:当进给速度为200、400 mm/min、搅拌针转速低于1000r/min时,AZ31镁合金的显微组织由于发生动态再结晶,获得了均匀细小的等轴晶,平均晶粒尺寸小于7μm。随着搅拌针转速提高,该合金显微组织不断粗化。与母材相比,经搅拌摩擦加工后,AZ31镁合金的应变强化效应明显增强,塑性明显提高,但屈服强度有所降低。采用搅拌速度600 r/min、进给速度400mm/min,工艺FSP处理后,该合金获得了最佳的综合力学性能。  相似文献   

17.
用正交试验的方法研究了AZ31镁合金板料工具转动渐进成形过程中工艺参数对板料成形性能的影响,试验采用变角度锥杯模型,并以成形破裂角作为试验指标。结果表明:单一因素对AZ31镁合金渐进成形性能的影响从主到次的顺序为主轴转速Z轴进给量工具头直径进给速度工具材料,主轴转速是影响镁合金板料成形性能的最主要因素,在保证板料成形性能和表面质量的前提下,为节约时间,尽量选用快的进给速度和大的Z轴进给量和工具头直径,工具材料对成形性能影响很小,可以忽略。正交试验中最优工艺参数组合:工具转速4500 r·min-1,进给速度300 mm·min,Z轴进给量0.3 mm,工具头直径Φ12 mm,工具材料HSS4341,成形破裂角为88.25°。  相似文献   

18.
为了分析工艺参数对金属板材单点渐进成形表面质量的影响,本文在数控铣床上进行了08Al钢方锥形盒单点渐进成形实验,检测了表面粗糙度,研究了工艺参数(成形角、横向进给速度、纵向进给速度和进给量)对渐进成形件表面质量的影响。结果表明:成形角为45°时,表面粗糙度最小;横向进给速度为150 mm/min时,表面粗糙度最大;表面粗糙度随纵向进给速度的增大而减小,随纵向进给量的增大而增大。  相似文献   

19.
目的针对HIPSN(热等静压氮化硅)陶瓷精密加工效率低、成本高、难度大的问题,对HIPSN陶瓷高效精密磨削加工工艺进行优化。方法利用高精度成形磨床对HIPSN陶瓷进行试验,分析砂轮线速度、磨削深度、工件进给速度等工艺参数对磨削后表面质量的影响规律。结果磨削深度由0.005 mm增加到0.050 mm,表面粗糙度值由0.2773μm减小到0.2198μm,并趋于稳定;工件进给速度由1000 mm/min增加到15 000 mm/min,表面粗糙度值由0.2454μm减小到0.2256μm,之后增大到0.2560μm,并趋于稳定;砂轮线速度由20 m/s增加到50 m/s,表面粗糙度值由0.2593μm减小到0.2296μm。随着工件进给速度的增大,表面波纹度平均间距Sw由0 mm直线增加到5.90 mm;随着砂轮线速度的提高,平均间距Sw由2.33 mm直线减小到0.68 mm。优化工艺参数组合:砂轮线速度50 m/s,磨削深度0.030 mm,工件进给速度3000 mm/min。结论表面粗糙度值与磨削深度和砂轮线速度呈负相关,随着工件进给速度的增大,表面粗糙度值先减小后增大,之后趋于稳定。减小工件进给速度、提高砂轮线速度有助于改善表面波纹度。  相似文献   

20.
以子午线轮胎模具侧板为研究对象进行铣削试验,着重研究主轴转速、每齿进给量、切削深度对轮胎模具侧板切削比能、材料去除率和表面粗糙度的影响规律。分析试验结果可知:切削比能随着切削参数的增大而减小,说明适当增大切削参数可以提高切削效率并节约能量;表面粗糙度随主轴转速增大呈先增大后减小的趋势,随切削深度和每齿进给量的增加而增大。结果表明:提高主轴转速既有利于降低切削比能(节能)也有利于改善表面粗糙度,增大每齿进给量和切削深度会降低切削比能但会恶化表面质量。因此,为同时达到高效节能和良好表面质量的要求,应尽量提高主轴转速。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号