首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
李平和  刘继雄  陈晓 《钢铁》2005,40(6):72-75
利用光学显微镜和透射电子显微镜对不同热处理工艺制度下高性能耐火耐候建筑用钢的显微组织进行了观察和分析。结果表明:热轧态50mm厚的高性能耐火耐候建筑用钢在910-940℃范围内正火,经600-700℃温度回火后,能获得铁素体、低碳贝氏体并含有少量M/A岛的组织,在低碳贝氏体边界上形成的细小稳定合金碳化物,有利于该钢在高温状态下的组织稳定及耐火性能的提高。  相似文献   

2.
高性能耐火耐候建筑用钢焊接性能研究   总被引:8,自引:1,他引:8  
对武钢研制的高性能耐火耐候建筑用钢WGJ510C2的焊接性能,包括最高硬度、斜Y坡口、手弧焊焊接接头力学性能和不同线能量下模拟焊接热影响区(CGHAZ)的组织结构进行了研究,试验结果表明,该钢具有低的冷纹敏感性,其焊接性能优良,并能承受大线能量焊接。  相似文献   

3.
对低屈强比建筑用耐火钢进行了实验研究,介绍了实验钢的化学成分、实验工艺、力学性能等;重点论述了合金元素、组织等对钢的屈强比、高温强度的影响。结果表明,该钢具有良好的综合机械性能,组织为铁素体基体 贝氏体,因此获得低的屈强比。合金元素Cr、Mo、Nb等的加入有效地提高了钢的高温性能。  相似文献   

4.
通过优化成分设计以及轧制、热处理工艺,成功开发出8 ~ 80 mm厚度的免涂装低屈强比耐候桥梁钢.针对免涂装低屈强比耐候桥梁钢的工艺、金相组织和焊接性进行分析研究,结果表明:耐候桥梁钢Q345qENH~ Q690qENH的屈强比可以通过适量铁素体+不同形态贝氏体组织配比进行调控,使低温冲击韧性、低屈强比和耐候性同时得到...  相似文献   

5.
介绍了高性能桥梁结构用钢板Q500q E的成分设计思路、生产工艺控制要点和产品实物性能。南钢采用低碳成分设计和TMCP+回火工艺技术,生产出集高强度、高韧性、抗震(低屈强比)、易焊接等多项性能为一体的高性能桥梁结构钢;该钢种同时还具有低冷裂纹敏感性指数及优异焊接性能,可以满足未来高速、重载、大跨度、全焊节点铁路桥梁用钢的需求。  相似文献   

6.
对一种低屈强比建筑用耐火钢进行试验研究,介绍了试验钢的化学成分、试验工艺、力学性能等,重点论述了合金元素、组织等对钢的屈强比、高温强度的影响。结果表明,该钢具有良好的综合机械性能,组织为铁素体基体加贝氏体第二相,因此获得低的屈强比。合金元素Cr、Mo、Nb等的加入有效地提高了钢的高温性能。  相似文献   

7.
建筑结构用钢的性能要求   总被引:1,自引:0,他引:1  
王怀宇 《宽厚板》2000,6(2):48-48
为了有效地利用地面空间进行城市建筑 ,不断向超高层、大空间发展 ,对城市建筑要采取抗震设计。这就要求改善建筑用钢的质量 ,提高其性能。要求在钢材的生产中 ,对建筑设计中所要求的钢材的屈服点 ( YP)、抗拉强度 ( TS)以及屈强比( YR)能够自由控制。也就是说 ,既要使钢具有高的屈服强度 ,又要降低钢的屈强比 ,而且还要使钢具有优良的焊接性能。1 焊接性近年来 ,随着城市建筑物向高层化、大型化发展 ,在钢材的使用上 ,倾向于使用厚钢材。采用HT50钢 ( TS50 kgf/mm2 )、HT60及 HT80钢 ,板厚达到 50 mm至 1 0 0 mm,在这种情况下 ,采用…  相似文献   

8.
对武钢研制的高性能耐火耐候建筑用钢WGJ510C2的焊接性能,包括最高硬度、斜Y坡口、手弧焊焊接接头力学性能和不同线能量下模拟焊接热影响区(CGHAZ)的组织结构及该钢的实际应用进行了研究。试验结果表明:该钢具有低的冷裂纹敏感性,其焊接性能优良,并能承受大线能量焊接。  相似文献   

9.
《钢铁钒钛》2021,42(4):138-143
设计了两种不同Cr含量460 MPa级抗震耐火建筑用钢,并进行了室温和高温机械性能检测,0.4%Cr和0.8%Cr试验钢的性能均满足抗震钢屈强比≤0.83,并且耐火钢600℃保温3 h后屈服强度≥307 MPa的标准。JMatPro热力学软件对460 MPa级抗震耐火建筑用钢的析出相进行计算,采用光学显微镜和透射电子显微镜方法对钢中的析出相进行了分析。结果表明,试验钢随Cr含量的升高,室温抗拉强度升高,屈强比降低,具有更好的抗震性能。Cr的增加,减少了高温稳定性较差的析出相的析出,降低了析出相中Mo的含量,促使Mo更多地溶入基体中,从而提高了抗震钢的高温固溶强化作用和耐火性能。  相似文献   

10.
钢结构自身重量轻、强度高,在工程建设中得到广泛应用。但因其耐高温性能差,对钢结构建筑的安全性有较大影响,限制了钢结构的应用。基于传统防火方法之一的截流法设计原理,针对国内外相应耐火钢种的研究、应用情况进行简要回顾,着重介绍了耐火钢的性能参数、强化机理、生产工艺的研究现状及其抗震和焊接性能特点,对国内耐火钢的研究开发和推广应用具有较高参考价值。  相似文献   

11.
随着低合金耐磨钢应用领域逐渐增加,对其中高温条件下的耐磨性能提出了要求.通过成分设计、控制轧制和离线热处理工艺制备了一种Mo、V合金化新型低合金高温耐磨钢.初步探索了其在300~500℃温度范围的高温磨损行为和组织演变,并与同硬度级别的商用常规耐磨钢NM450进行了对比分析.结果 表明:通过添加Mo和V等元素可以抑制位...  相似文献   

12.
Q550高强钢广泛应用于各类工程机械,其轧制工艺窗口窄,力学性能对轧制工艺非常敏感.为了优化实际生产的轧制工艺参数,本研究设定了3种工艺,通过调整Q550高强钢轧制过程和冷却过程的工艺参数,共得到了3种不同室温组织,对比其室温拉伸、弯曲、-20℃冲击性能检验结果发现,与铁素体+珠光体混合组织相比,上贝氏体组织提高了屈服...  相似文献   

13.
对耐火耐侯钢的高温性能进行热模拟研究,发现该钢在500℃装炉时钢的高温强度最低,比冷装炉钢的高温强度低20MPa,600℃装炉时钢的高温强度最高,比冷装炉钢的高温强度高40MPa。总体来说,热装不会影响该钢的高温性能,热装温度高于600℃对该钢的高温性能更为有利。600℃以下装炉,该钢加热奥氏体晶粒度与冷装的差不多。600℃以上装炉,加热奥氏体晶粒度比冷装炉的要小l级左右。  相似文献   

14.
摘要:为探究Nb对双相耐热钢高温抗氧化性能的影响规律,采用扫描电镜、能谱分析和XRD等分析测试手段研究了1000和1100℃下含Nb双相耐热钢高温氧化性能。结果表明,双相耐热钢氧化层结构为氧化外层(MnCr2O4)→氧化内层(Cr2O3)→Si的内氧化层;Nb的加入加速双相耐热钢的表层氧化膜生长,降低了其抗氧化性能;随着Nb含量的增加,表层基体内部形成富Nb相,促进Si的沿晶界氧化而抑制Si的界面氧化,Cr2O3层和Si的内氧化层厚度均增加。在对高温抗氧化性能要求高的情况下,本双相耐热钢中Nb的质量分数应控制在0.8%以下。  相似文献   

15.
对高强海洋工程用钢分别经过一次淬火+回火(QT)和一次淬火+两相区淬火+回火(QLT)2种热处理工艺处理后,采用扫描电镜(SEM)、连续冷却转变(CCT)曲线、高分辨透射电镜(HRTEM)等手段对其微观组织、相变特性和Cu的析出相进行了检测,并进行了室温拉伸性能及系列温度夏比冲击性能的测定.结果表明:实验钢在0.3~2...  相似文献   

16.
利用旋转弯曲疲劳试验研究新型扭杆弹簧用N1钢和45CrNiMoVA钢的疲劳性能,并通过对2种试验钢组织、硬度、强度、夹杂物类型及大小、疲劳裂纹扩展速率以及氢含量的对比,探讨影响扭杆弹簧用钢旋转弯曲疲劳性能的因素及其疲劳失效机制.结果表明,推荐热处理制度的45CrNiMoVA钢和N1钢旋转弯曲疲劳极限强度分别为892和9...  相似文献   

17.
通过一系列不同厚度的模具浇铸得到不同凝固冷却速率的铸坯,采用腐蚀法结合计算机辅助设计(Creo Parametric)技术重构了高钛耐磨钢中液析TiC在基体中的三维形貌,利用OM和SEM对液析TiC的二维和三维形貌进行对比分析,借助TEM和SAXS研究了凝固冷速对TiC析出的影响.结果表明:液析TiC在空间中的三维形貌...  相似文献   

18.
为实现C-HRA-5含Nb奥氏体耐热钢冶炼过程气相氮合金化精确控制,进行了0.033~0.1 MPa氮气压力和1793~1853K下的气相渗氮实验,建立了含Nb耐热钢的氮溶解度模型和气相渗氮动力学模型.结果 表明:通过考虑Cr、Ni与Nb对氮活度相互作用系数,含Nb奥氏体耐热钢的氮溶解度模型计算结果和实测值吻合良好,氮...  相似文献   

19.
在生产条件下,通过成分设计和轧制、热处理工艺设计,采用晶粒细化、固溶强化、析出强化等手段,得到金相组织为保持马氏体位向的索氏体组织,生产出性能优异的Q690D-Z35高强度钢板。  相似文献   

20.
摘要:利用OLYMPUS GX71光学显微镜、场发射扫描电镜Quanta450和JEM2100F型透射电镜等手段对60mm厚淬火态以及淬火+回火态耐磨钢厚度截面组织性能演变规律进行了研究。结果表明,淬火态耐磨钢厚度截面呈表层硬度高、心部硬度低的梯度分布,回火后表层和心部呈现相反的变化趋势,心部/表面硬度比从70%升至93%,1/4处和心部冲击功降低。厚度截面组织和析出相的差异影响固溶强化和析出强化效果,是性能演变的本质原因,提高淬火冷却速度,改善淬火态厚度截面均匀性是提高性能均匀性和优化应用性能的根本方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号