首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption capacity of activated carbon prepared from spent tea leaves(STL-AC) for the removal of aspirin from aqueous solution was investigated in this study. Preliminary studies have shown that treatment with phosphoric acid(H_3PO_4) increased removal efficiency of STL-AC. Characterizations on STL-AC revealed excellent textural properties(1200 m~2·g~(-1), 51% mesoporosity), as well as distinctive surface chemistry(1.08 mmol·g~(-1) and 0.54 mmol·g~(-1) for acidic and basic oxygenated groups, pH_(pzc)= 2.02). Maximum removal efficiency of aspirin observed was 94.28% after 60 min when the initial concentration was 100 mg·L~(-1), 0.5 g of adsorbent used,pH 3 and at a temperature of 30 ℃. The adsorption data were well fitted to the Freundlich isotherm model and obeyed the pseudo-second order kinetics model. The adsorption of aspirin onto STL-AC was exothermic in nature(ΔH~Θ=~(-1)3.808 k J·mol~(-1)) and had a negative entropy change, ΔS~Θ(-41.444 J·mol~(-1)). A negative Gibbs free energy, ΔG~Θ was obtained indicating feasibility and spontaneity of the adsorption process. The adsorption capacity of AC-STL(178.57 mg·g~(-1)) is considerably high compared to most adsorbents synthesized from various sources, due to the well-defined textural properties coupled with surface chemistry of STL-AC which favors aspirin adsorption. The results demonstrate the potential of STL-AC as aspirin adsorbent.  相似文献   

2.
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650°C under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60°C),initial dye concentration(0–200 mg·L~(-1)),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H_2SO_4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl_2.The adsorption capacity of TSAC was found to be 11.98 mg·g~(-1)(RB5)and 13.27 mg·g~(-1)(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.  相似文献   

3.
Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained from a local wood mill.The matrix of both provides a better material as an adsorbent.The present study applied the functionality of ZnOnp,CSD,and ZnOnp-CSD matrix as adsorbent materials for the removal of Pb(Ⅱ) ions from aqueous solution.The method of batch process was employed to investigate the potential of the adsorbents.The influence of pH,contact time,initial concentration of adsorbate,the dosage of adsorbents,and the temperature of adsorbate-adsorbent mixture on the adsorption capacity were revealed.The adsorption isotherm studies indicate that both Freundlich and Langmuir isotherms were suitable to express the experimental data obtained with theoretical maximum adsorption capacities(q_m) of 70.42,87.72,and 92.59 mg·g~(-1) for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix,respectively.The separation factors(R_L) calculated showed that the use of the adsorbents for the removal of Pb(Ⅱ) ions is a feasible process with R_L 1.The thermodynamic parameters obtained revealed that the processes are endothermic,feasible,and spontaneous in nature at 25-50℃.Evaluation of the kinetic model elected that the processes agreed better with pseudo-second order where the values of rate constant(k_2) obtained for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix are 0.00149,0.00188,and 0.00315 g·mg~(-1)·min~(-1),respectively.The reusability potential examined for four cycles indicated that the adsorbents have better potential and economic value of reuse and the ZnOnp-CSD matrix indicates improved adsorbent material to remove Pb(Ⅱ) ions from aqueous solution.  相似文献   

4.
The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied.The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni^2 in citric acid.The influence of pH was significant:When pH is higher than 4.0,the high adsorption capacity is obtained.otherwise H^ ion inhibits the adsorption of heavy metal ions.The comparison of the chitin adsorbent with some other commercial adsorbents was made,in which that the adsorption behavior of chitin adsorbent is close to that of commercial cation exchange adsorbents,and its cost is much lower than those commercial adsorbents.  相似文献   

5.
In tnis study,an alternative precursor for production of activated carbon was introduced using dragon fruit(Hylocereus costaricensis) peel(DFP).Moreover,KOH was used as a chemical activator in the thermal carbonization process to convert DFP into activated carbon(DFPAC).In order to accomplish this research,several approaches were employed to examine the elemental composition,surface properties,amorphous and crystalline nature,essential active group,and surface morphology of the DFPAC.The Brunauer-Emmett-Teller test demonstrated a mesoporous structure of the DFPAC has a high surface area of 756.3 m~2·g~(-1).The cationic dye Methylene Blue(MB) was used as a probe to assess the efficiency of DFPAC towards the removal of MB dye from aqueous solution.The effects of adsorption input factors(e.g.DFPAC dose(A:0.04-0.12 g·L~(-1)), pH(B:3-10),and temperature(C:30-50℃)) were investigated and optimized using statistical analysis(i.e.Box-Behnken design(BBD)).The adsorption kinetic model can be best categorized as the pseudo-first order(PFO).Whereas,the adsorption isotherm model can be best described by Langmuir model,with maximum adsorption capacity of DFPAC for MB dye was 195.2 mg·g~(-1) at 50℃.The adsorption mechanism of MB by DFPAC surface was attributed to the electrostatic interaction,π-π interaction,and H-bonding.Finally,the results support the ability of DFP to be a promising precursor for production of highly porous activated carbon suitable for removal of cationic dyes(e.g.MB).  相似文献   

6.
Chromium is a common harmful pollutant with high toxicity and low bearing capacity of soil and water. Excellent salinity resistance, a wide p H range, and high regeneration capacity were essential for qualified adsorbents used in removing hexavalent chromium(Cr(VI)) from polluted water. Herein, iron oxalate modified weak basic resin(IO@D301) for the removal of Cr(VI) was prepared by the impregnation method. The IO@D301 was characterized by scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FTIR), X-Ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS). Owing to abundant amine, carboxyl groups and iron ions existing on the surface, IO@D301 possesses high adsorption and salinity resistance capacity for Cr(VI). The maximum adsorption capacity of IO301 towards Cr(VI) reached 201.30 mg·g~(-1) at 293 K and a p H of 5. The adsorption equilibrium was well fitted by the Freundlich model, and the adsorption process was described by the pseudofirst-order kinetics model as spontaneous and exothermic. The mechanism may be identified as electrostatic attraction, coordination, and reduction, which was confirmed by FT-IR and X-ray photoelectron spectroscopy.  相似文献   

7.
Water contamination caused by hazardous organic dyes has drawn considerable attention, among all of the techniques released, adsorption has been widely used, which however to a large degree is dependent on the development of high efficiency adsorbents. Waste biomass based porous carbon is becoming the new star class of adsorbents, and thus contribute more to the sustainable development of the society. In this work, for the first time to the best of our knowledge, abundant waste fallen Platanus orientalis leaves are employed as the raw material for hierarchical activated porous carbon(APC) microspheres via a mild hydrothermal carbonization(210 °C,12.0 h) followed by one-step calcination(750 °C, 1.0 h). The APC microspheres exhibit a specific surface area of1355.53 m~2·g~(-1) and abundant functional groups such as O—H and C=O. Furthermore, the APC microspheres are used as the adsorbents for removal of Rh B and MO, with the maximum adsorption capabilities of 557.06 mg·g~(-1) and 327.49 mg·g~(-1), respectively, higher than those of the most porous carbon originated from biomass. The adsorption rates rapidly approach to 98.2%(Rh B) and 95.4%(MO) within 10 min. The adsorption data can be well fitted by Langmuir isotherm model and the pseudo-second-order kinetic model, meanwhile the intra-particle diffusion and Boyd models simultaneously indicate that the diffusion within the pores is the main rate-limiting step. Besides, the APC microspheres also demonstrate good recyclability, and may also be applied to other areas such as heterogeneous catalysis and energy storage.  相似文献   

8.
A fast and selective adsorbent for Hg(II) from aqueous solutions using thiourea(TU) functionalized polypropylene fiber grafted acrylic acid(PP-g-AA),PP-g-AA-TU fibers,was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.The adsorption behavior of the functionalized chelating fibers for Hg(II) was investigated by static adsorption experiments,and the effects of some essential factors on adsorption of Hg(II) were examined,such as pH,initial concentration,adsorption time,coexisting cations,and temperature.The results showed that the adsorptive equilibrium could be achieved in 10 min,and the equilibrium adsorption quantity of PP-g-AA-TU fibers was 20 times that of PP-g-AA fibers.The PP-g-AA-TU fibers showed a very high adsorption rate and a good selectivity for Hg(II) over a wide range of p H.The adsorption isotherm can be well described with Langmuir model,with the maximum adsorption capacity for Hg(II) up to52.04 mg·g~(-1)and the removal of Hg(II) more than 97%.The kinetic data indicate that the adsorption process is best-fitted into the pseudo-second-order model.  相似文献   

9.
A semi-empirical adsorption kinetic model was proposed with the time compensation method to describe the chemisorption of SO2 in flue gas by carbon adsorbents for flue gas purification. The change in adsorption capacity and adsorption rate with time at different water vapor concentrations and different SO2 concentrations was studied. The model was in good agreement with experimental data. The surface reaction was probably the rate controlling step in the early stage for SO2 adsorption by ZL50 activated carbon. The parameters m and n in the nth order adsorption kinetic model were related to the magnitude of the time compensation and adsorption driving force, respectively. The change of parameter n with water vapor concentrations and sulfur dioxide concentrations was studied and some physical implications were given. The sum of square errors was less than 1.0 and the average absolute percentage deviations ranged from 0.5 to 3.2. The kinetic model was compared with other models in the literature.  相似文献   

10.
Adsorption equilibria of CH4 and N2 on activated carbon and silica gel were measured for a wide temperature rang covering the critical point:158-298K for CH4,and 103-298K for N2.The determination of the compressibility factor is shown to have considerable effect on isotherm behavior at conditions after the isotherm maximum.A change in adsorption mechanisms on crossing the critical temperature was observed in all cases. The kind of adsorbents and how far the equilibrium temperature to the critical one are major factors affecting the transition of isotherms from sub-to supercritical.All continuous isotherms can be modeled by a unique model for the supercritical region.The satisfactory fitting of the model to the experimental isotherms proved the reliability of the absolute adsorption determined by the proposed method.  相似文献   

11.
由飞灰合成的沸石吸附废水中染料的动态平衡   总被引:2,自引:0,他引:2       下载免费PDF全文
The removal performance of a basic dye, methylene blue (MB), in aqueous solution was investigated by adsorption process on single-phase and high-crystalline zeolite A (FA-ZA) and X (FA-ZX). Both adsorbents FA-ZA and FA-ZX were synthesized from fly ash prepared aluminosilicate gel followed by the hydrothermal treatment at 100°C with the control of Si/Al molar ratio, respectively. The properties of the synthetic zeolites and commercial grade zeolites, such as thermal stability, elemental composition, and cation exchange capacity, were investigated for comparison. Batch method was used to study the influential parameters, such as initial pH value of the solution, temperatures, and adsorbents dosage, on the adsorption process. The experimental data were well fitted by Ho’ pseudo-second-order model and liquid film diffusion model. The suitability of Langmuir and Freundlich isotherms to the equilibrium data was investigated in the solid-liquid system while the Langmuir model produces the best re-sults. Thermodynamic data (ΔH, ΔS, and ΔG) corresponding to the MB uptake were evaluated from the Langmuir model. In all the adsorption experiments, the adsorption capacity followed the order as follows: FA-ZX > FA-ZA. In addition, attempts were also made to regenerate the adsorbents.  相似文献   

12.
A novel arsenic adsorbent with hydrous cerium oxides coated on glass fiber cloth(HCO/GFC)was synthesized.The HCO/GFC adsorbents were rolled into a cartridge for arsenic removal test.Due to the large pores between the glass fibers,the arsenic polluted water can flow through easily.The arsenic removal performance was evaluated by testing the equilibrium adsorption isotherm,adsorption kinetics,and packed-bed operation.The pH effects on arsenic removal were conducted.The test results show that HCO/GFC filter has high As(Ⅴ)and As(Ⅲ)removal capacity even at low equilibrium concentration.The more toxic As(Ⅲ)in water can be easily removed within a wide range of solution p H without pre-treatment.Arsenic contaminated ground-water from Yangzong Lake(China)was used in the column test.At typical breakthrough conditions(the empty bed contact time,EBCT=2 min),arsenic researched breakthrough at over 24,000 bed volumes(World Health Organization(WHO)suggested that the maximum contaminant level(MCL)for arsenic in drinking water is 10 mg/L).The Ce content in the treated water was lower than 5 ppb during the column test,which showed that cerium did not leach from the HCO/GFC material into the treated water.The relationship between dosage of adsorbents and the adsorption kinetic model was also clarified,which suggested that the pseudo second order model could fit the kinetic experimental data better when the adsorbent loading was relatively low,and the pseudo first order model could fit the kinetic experimental data better when the adsorbent loading amount was relatively high.  相似文献   

13.
Expanded bed adsorption (EBA), a promising and practical separation technique, has been widely studied in the past two decades. The development of adsorbents for EBA process is a challenging course, with the special design and preparation according to the target molecules and specific expanded bed systems. Many types of supporting matrices for expanded bed adsorbents have been developed, and their preparation methods are being consummated gradually. These matrices are activated and then coupled with ligands to form functionalized adsorbents, including ion-exchange adsorbents, affinity adsorbents, mixed mode adsorbents, hydrophobic charge induction chromatography adsorbents and others. In this review, the preparation of the matrices for EBA process is summa-rized, and the coupling of ligands to the matrices to prepare functionalized adsorbents is discussed as well.  相似文献   

14.
Water pollution caused by highly toxic Cd(II), Pb(II), and Cr(VI) is a serious problem. In the present work,a green and low-cost adsorbent of g-C_3N_4 nanosheets was developed with superior capacity for both cationic and anionic heavy metals. The adsorbent was easily fabricated through one-step calcination of guanidine hydrochloride with thickness less than 1.6 nm and specific surface area of 111.2 m~2·g~(-1). Kinetic and isotherm studies suggest that the adsorption is an endothermic chemisorption process, occurring on the energetically heterogeneous surface based on a hybrid mechanism of multilayer and monolayer adsorption. The tri-s-triazine units and surface N-containing groups of g-C_3N_4 nanosheets are proposed to be responsible for the adsorption process.Further study on pH demonstrates that electrostatic interaction plays an important role. The maximum adsorption capacity of Cd(II), Pb(II), and Cr(VI) on g-C_3N_4 nanosheets is 123.205 mg·g~(-1), 136.571 mg·g~(-1),and 684.451 mg·g~(-1), respectively. The better adsorption performance of the adsorbent than that of the recently reported nanomaterials and low-cost adsorbents proves its great application potential in the removal of heavy metal contaminants from wastewater. The present paper developed a promising adsorbent which will certainly find applications in wastewater treatment and also provides guiding significance in designing adsorption processes.  相似文献   

15.
A new metal-organic framework(MOF) with the chemical formula of [Ni_2 F_2(4,4'-Bipy)_2(H_2 O)_2](VO_3)_2·8 H_2 O was introduced to adsorb Pb(Ⅱ) with the highest capacity.The sorbent was characterized by thermogravimetric analysis(TGA),infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),energy-dispersive Xray(EDX),and elemental analysis.The optimum conditions were obtained by a face-centered central composite design(FCCD) as follows:adsorbent dosage(m)=1.2 mg, initial concentration of Pb(Ⅱ)(C)=390 mg·L~(-1),and pH=5.According to the Langmuir model(R~2=0.9999),the maximum monolayer uptake capacity of lead(Ⅱ) is 2400.7 mg·g~(-1),which is the highe st observed amount for lead(Ⅱ) adsorption.Neither of the old adsorbents for lead(Ⅱ)has the uptake capacity over 2000 mg·g~(-1).The model of pseudo-second-order describes well the process kinetics.The adsorption process of lead(Ⅱ) is independent of temperature changes.This compound can adsorb lead(Ⅱ) from tap water.In addition to introducing a new MOF with the highest uptake capacity for removal of Pb(Ⅱ) that is the outright novelty of this study,the concurrent modeling of both the removal percent(R) and the uptake capacity(q) is another important advantage.Because it achieves the more economical and favorable optimum conditions in comparison with the single optimization of each response.  相似文献   

16.
A facile eco-friendly hydrothermal route(180 °C, 12.0 h) has been developed for the first time to the uniform hierarchical porous MgBO_2(OH) microspheres without the aid of any organic additive, surfactant or template, by using the abundant MgCl_2·6 H_2 O, H_3BO_3 and NaOH as the raw materials. The as-obtained porous microspheres exhibit a specific surface area of 94.752 mg·g~(-1), pore volume of 0.814 cm3·g~(-1), and ca. 84.0% of which have a diameter of 2.25–3.40 μm. The thermal decomposition of the porous MgBO_2(OH) microspheres(650 °C,2.5 °C·min~(-1)) leads to the porous Mg_2B_2O_5 microspheres with well-retained morphology. When utilized as the adsorbents for the removal of CR from mimic waste water, the present porous MgBO_2(OH) microspheres exhibit satisfactory adsorption capacity, with the maximum adsorption capacity q~(-1) mof 309.1 mg·g, much higher than that derived from most of the referenced adsorbents. This opens a new window for the facile green hydrothermal synthesis of the hierarchical porous MgBO_2(OH) microspheres, and extends the potential application of the 3 D hierarchical porous metal borates as high-efficiency adsorbents for organic dyes removal.  相似文献   

17.
Trace zeolitic imidazolate framework-8(ZIF-8)-decorated activated carbon(AC) pellets were synthesized by a facile wet impregnation technique. After pyrolysis of the above composite material, the obtained carbon had a large surface area and pore volume, with traces of Zn on its surface. Subsequently, the capacity of the ZIF8/AC samples to adsorb and remove phenol from aqueous media was evaluated in both batch and column experimental setups. The equilibrium adsorption capacity reached 155.24 mg·g~(-1), which was 2.3 times greater than that of the pure AC(46.24 mg·g~(-1)). In addition, adsorption kinetics were examined by pseudofirst and pseudosecond order models, and adsorption isotherms were fitted into Langmuir and Freundlich equations. The adsorbent could be easily filtered from the solution and washed with methanol and water, while maintaining an efficiency N 90% after 4 cycles. The above results make it a potentially reusable candidate for water purification.  相似文献   

18.
In this article, morphology, structure and size controllable chitosan microspheres with high mechanical strength were synthesized by microfluidic technology combining chemical crosslinking and used as an adsorbent for methyl orange. The synthesized adsorbents were characterized using scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR), and an Energy Dispersive Spectrometer(EDS). The effect of pH revealed that the adsorption process depended on pH and the pH variation of methyl orange solution after adsorption indicated that adsorption capacity was affected through the associated role of chitosan nature and pH variation. Experimental results suggested that the as-prepared chitosan microspheres were controlled within a narrow size distribution(coefficients of variation is 1.81%), whose adsorption capacity reached to 207 mg·g~(-1) and mechanical strength was suitable to resist forces. In addition, the adsorption isotherm was well fitted with the Langmuir model, and the adsorption kinetic was best described by the pseudo-second-order kinetic model.The high performance microfluidic-synthesized chitosan microspheres have promising potentials in the applications of removing dyes from wastewater.  相似文献   

19.
褐煤活性炭吸附苯酚的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
The feasibility and adsorption effect of lignite activated carbon for phenol removal from aqueous solutions were evaluated and investigated. A series of tests were performed to look into the influence of various experimental parameters such as contact time, initial phenol concentration, temperature, and pH value on the adsorption of phenol by lignite activated carbon. The experimental data were fitted well with the pseudo-second-order kinetic model. The adsorption is an endothermic process and conforms to Freundlich thermodynamic model. The results indicate that the lignite activated carbon is suitable to be used as an adsorbent material for adsorption of phenol from aqueous solutions.  相似文献   

20.
Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号