共查询到20条相似文献,搜索用时 0 毫秒
1.
Safety is the highest priority in the mining industry as underground mining in particular poses high safety risks to its workers. In underground coal mines, coal bursts are one of the most catastrophic hazards, which involves sudden and violent dynamic coal mass failure with rapid ejection of the broken material into the mine workings. Despite decades of research, the contributing mechanisms of coal bursts are still not completely understood. Hence, it remains challenging to forecast coal bursts and quantify their likelihood of occurrence. However, a range of geological and geotechnical factors are associated with coal bursts and can increase the coal burst proneness. This paper introduces a semi-quantitative coal burst risk classification system, namely, BurstRisk. Based on back-analysis of case histories from Australia, China and the United States, BurstRisk classifies the coal burst risk into three categories:low, medium and high risk. In addition, it allows mining engineers to modify the weighting of the selected factors based on specific conditions. The risk classification charts introduced are for both longwall retreat and development sections of long-wall mining operations. This paper also provides a set of risk management strategies and control measures for effective coal burst mitigation. 相似文献
2.
《矿业科学技术学报(英文版)》2017,27(1):3-7
A coal burst occurred on 15 April, 2014 at the Austar Coal Mine, located west of Newcastle, NSW,Australia. The burst resulted in fatal injuries to two men working as part of the mining crew at the development face. At the time, a continuous miner was being used to mine a longwall development gate road through heavily structured coal, at a depth of approximately 550 m. A number of pre-cursor bumps had occurred on previous shifts, emanating from the coal ribs of the roadway, in proximity to the coal face.This paper reviews the geological, geotechnical and mining conditions and circumstances leading up to the coal burst event; and presents and discusses the available evidence and possible interpretations relating to the geomechanical behaviour mechanisms that may have been critical factors in this incident. The paper also discusses some key technical and operational considerations of ground support systems and mining practices and strategies needed for operating in such conditions in the future. 相似文献
3.
Christopher Mark 《矿业科学技术学报(英文版)》2021,31(1):111-116
In order to reach a large, untapped reserve of high-quality coal, D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain, Kentucky's highest peak. D8 Cloverlick Mine was extracting the Owl seam, but the corridor's route lay approximately 20 m above century-old mine workings in the C–(Darby) seam. Adding to the concern, three serious coal bursts had recently occurred in nearby Owl seam workings. Maps of the old workings seemed to indicate that the underlying C–seam had been fully extracted. However, two of the coal bursts had occurred above areas where the C–Seam was also shown as mined out. Mine Safety and Health Administration(MSHA) Technical Support therefore investigated the records of past mining to better understand the old mine maps. Underground conditions observed in current Owl seam workings were also compared with the maps of the old C–seam workings. The study concluded that the presence of hazardous underlying remnants could not be ruled out. To mitigate the burst risk, D8 Cloverlick Mine adopted a strategy of stress probe drilling. A self-propelled coal drill was used to auger 11.5-m-long, small diameter holes in advance of mining. As each hole was drilled, the cuttings were measured to detect the presence of highly stressed coal. Ultimately the crossing was successfully completed without incident. 相似文献
4.
《矿业科学技术学报(英文版)》2017,27(1):83-90
Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health(NIOSH). A commercially available, digital single-lens reflex(DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject,camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio(F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study. 相似文献
5.
《矿业科学技术学报(英文版)》2019,29(5):711-720
A 2nd generation roof bolter canopy air curtain(CAC) design was tested by National Institute for Occupational Safety and Health(NIOSH) at a Midwestern underground coal mine. During the study,the roof bolter never operated downwind of the continuous miner. Using a combination of personal Data Rams(p DR) and gravimetric samplers, the dust control efficiency of the roof bolter CAC was ascertained. Performance evaluation was determined using three methods:(1) comparing roof bolter operator concentrations underneath the CAC to roof bolter concentrations outside the CAC,(2) comparing roof bolter operator concentrations underneath the CAC to the concentrations at the rear of the bolter, and finally,(3) using the gravimetric data directly underneath the CAC to correct roof bolter operator concentrations underneath the CAC and comparing them to the concentrations at the rear of the bolter. Method 1 dust control efficiencies ranged from -53.9% to 60.4%. Method 2 efficiencies ranged from -150.5% to 52.2%,and Method 3 efficiencies ranged from 40.7% to 91%. Reasons for negative and low dust control efficiencies are provided in this paper and include: incorrect sampling locations, large distance between CAC and operator, and contamination of intake air from line curtain. Low dust concentrations encountered during the testing made it difficult to discern whether differences in concentrations were due to the CAC or due to variances inherent in experimental dust measurement. However, the analyses, especially the Method 3 analysis, show that the CAC can be an effective dust control device. 相似文献
6.
《矿业科学技术学报(英文版)》2017,27(1):131-137
Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also known as gob regions, can result in abutment stresses that affect the active mining. If there was no full extraction, and the past mining consists entirely of intact pillars, the stresses on the active seam are usually minimal. However, experience has shown that in some situations there has been sufficient yielding in overlying or underlying pillar systems to cause stress transfer to the adjoining larger pillars or barriers, which in turn, transfer significant stresses onto the workings of the active seam. In other words, the overlying or underlying pillar system behaves as a ‘‘pseudo gob." The presence of a pseudo gob is often unexpected, and the consequences can be severe. This paper presents several case histories, summarized briefly below, that illustrate pseudo gob phenomenon:(1) pillar rib degradation at a West Virginia mine at 335 m depth that contributed to a rib roll fatality,(2) pillar rib deterioration at a Western Kentucky mine at 175 m depth that required pillar size adjustment and installation of supplemental bolting,(3) roof deterioration at an eastern Kentucky mine at 400 m depth that stopped mine advance and required redirecting the section development,(4) coal burst on development at an eastern Kentucky mine at 520 m depth that had no nearby pillar recovery, and(5) coal burst on development at a West Virginia mine at the relatively shallow depth of 335 m that also had no nearby pillar recovery. The paper provides guidance so that when an operation encounters a potential pseudo gob stress interaction the hazard can be mitigated based on an understanding of the mechanism encountered. 相似文献
7.
《矿业科学技术学报(英文版)》2016,26(1):39-46
Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and discusses mechanisms that can be used to avoid their occurrences. Coal burst are not common in most underground mines. Their occurrence almost always has such dramatic consequences to a mining operation that changes in practice are required. Fundamental factors influencing coal burst events include strong strata,abnormal strata caving,elevated stresses,critical size pillars and the lack of sufficiently sized barrier pillars during extraction. These factors interact to produce excessive stress,seismic shock and loss of confinement mechanisms. Over the 90 years of dealing with these hazards,many novel prevention controls have been developed including novel mine designs and extraction sequences,most of which are site specific in their application. Without an accurate assessment of the fundamental factors that influence coal burst and knowledge of their mechanisms of occurrence,control techniques may be misapplied and risk inadequately mitigated. 相似文献
8.
《矿业科学技术学报(英文版)》2017,27(1):43-47
Coal burst is a dynamic release of energy within the rock(or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most catastrophic failures associated with the coal mining industry, which can often lead to injuries and fatalities of miners as well as significant production losses. This paper aims to examine the mechanisms contributing to coal burst occurrence, with an emphasis on the energy release concept. In this study, a numerical modelling study has been conducted to evaluate the roles and contributions of difference energy components. The energy analysis presented in this paper can help to improve the understanding of energy release mechanisms especially under Australian conditions. 相似文献
9.
《矿业科学技术学报(英文版)》2019,29(3):453-467
Underground coal mining is one of the most dangerous occupations throughout the world. The reasons behind an underground occupational accident are too complex to analyze mainly due to many uncertainties which may arise from geological, operational conditions of the mine or individual characteristics of employees. This study proposes implementing a quantitative methodology for the analysis and assessment of hazards associated with occupational accidents. The application of the proposed approach is performed on the mines of Turkish Hard Coal Enterprises(TTK). The accidents in TTK between the years 2000 and 2014 are firstly statistically analyzed with respect to the number, type and location of accidents, age,experience, education level and main duty of the casualties and also injuries resulting from such accidents. The hazards are classified as individual, operational and locational hazards and quantified using contingency tables, conditional and total probability theorems. Lower and upper boundaries of hazards are determined and event trees for each hazard class are prepared. Total hazard evaluation results show that Armutcuk, Karadon and Uzulmez mines have relatively high hazard levels while Amasra and Kozlu mines have relatively lower hazard values. 相似文献
10.
《矿业科学技术学报(英文版)》2017,27(3):567-571
LHD's are expensive vehicles; therefore, it is important to accurately define the financial consequences associated with the investment of purchasing the mining equipment. This study concentrates on longterm incremental and sensitivity analysis to determine whether it is feasible to incorporate current battery technology into these machines. When revenue was taken into account, decreasing the amount of haulage in battery operated equipment by 5% or 200 kg per h amounts to a $4.0 × 10~4 loss of profit per year. On average it was found that using battery operated equipment generated $9.5 × 10~4 more in income annually, reducing the payback period from seven to two years to pay back the additional $1.0 × 10~5 investment of buying battery powered equipment over cheaper diesel equipment. Due to the estimated 5% increase in capital, it was observed that electric vehicles must possess a lifetime that is a minimum of one year longer than that of diesel equipment. 相似文献
11.
Based on a RUSLE model,we identified the key factors of the impact on soil erosion induced by coal mining subsidence.We designed a method for predicting LS factors of a mining subsidence basin,using an... 相似文献
12.
《矿业科学技术学报(英文版)》2020,30(1):11-16
The proliferation of unconventional gas well development in the Northern Appalachian coalfields has raised a number of mine safety concerns. Unconventional wells, which extract gas from deep shale formations, are characterized by gas volumes and pressures that are significantly higher than those observed at many conventional wells. The gas is composed largely of methane as well as other hydrocarbons. Hundreds of planned and actively producing wells penetrate protective coal pillars or barriers within active mine boundaries, including chain pillars located between longwall panels. Gas released from a well damaged by mining-induced ground movements could pose a risk to miners by flowing into the mine atmosphere. The mining-induced ground movements that may cause well damage include conventional subsidence, non-conventional subsidence(e.g. bedding plane slip), pillar failure, and floor instability. This paper describes the known risk factors for each of the four failure mechanisms. It includes a framework that can guide the risk assessment process when mining takes place near gas or oil wells. 相似文献
13.
为研究煤岩破裂微震信号的特征,利用微震监测系统对井下煤岩进行微震信号的监测试验,分析了煤岩破裂微震信号的变化规律。试验结果表明:微震信号的变化趋势与煤岩发生破裂的强弱基本呈正相关。微震信号强度强,煤岩发生破裂伴随着较大能量,之后随着时间的增长,能量逐渐减小,微震信号也明显减弱,直到最后传感器监测不到信号。 相似文献
14.
《矿业科学技术学报(英文版)》2019,29(6):825-830
An ignition of methane and air can generate enough air flow to raise mixtures of combustible coal and rock dust. The expanding high temperature combustion products ignite the suspended dust mixture and will continue to propagate following the available combustible fuel supply. If the concentration of the dispersed rock dust is sufficient, the flame will stop propagating. Large-scale explosion tests were conducted within the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Experimental Mine (LLEM) to measure the dynamic pressure history and the post-explosion dust scour depth. The aim of this effort is to provide quantitative data on depth of dust removal during the early stages of explosion development and its relationship to the depth of floor dust collected for assessing the incombustible content most likely to participate in the combustion process. This experimental work on dust removal on is not only important for coal mine safety but also for industrial dust explosions. 相似文献
15.
本文对西德1140伏漏电保护系统的性能作了全面、系统的分析。该系统是目前较完善的漏电保护系统。但在某些范围内的漏电故障,仍潜在着不安全因素。另外,本文还对国产漏电保护装置存在的问题指出了解决的方向。 相似文献
16.
Risk evaluation of rock burst through theory of static and dynamic stresses superposition 总被引:3,自引:0,他引:3
Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method’s feasibility. 相似文献
17.
《矿业科学技术学报(英文版)》2017,27(5):787-794
The prediction of gas emissions arising from underground coal mining has been the subject of extensive research for several decades, however calculation techniques remain empirically based and are hence limited to the origin of calculation in both application and resolution. Quantification and management of risk associated with sudden gas release during mining(outbursts) and accumulation of noxious or combustible gases within the mining environment is reliant on such predictions, and unexplained variation correctly requires conservative management practices in response to risk. Over 2500 gas core samples from two southern Sydney basin mines producing metallurgical coal from the Bulli seam have been analysed in various geospatial context including relationships to hydrological features and geological structures. The results suggest variability and limitations associated with the present traditional approaches to gas emission prediction and design of gas management practices may be addressed using predictions derived from improved spatial datasets, and analysis techniques incorporating fundamental physical and energy related principles. 相似文献
18.
《矿业科学技术学报(英文版)》2016,26(6):1033-1042
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed herein include mechanical and natural cooling systems, ranging from mechanical chillers to seasonal thermal storages. The economic and operating parameters for each technology were estimated and evaluated according to the mine's energy loads. Including consideration of any combined heat and power benefits of the technology, cooling tower requirements, etc., the resulting cost of implementation for each technology could be ranked. This showed that the natural thermal storage systems and conventional chillers were the most cost-effective, mainly since the natural systems had very low operating cost and the chillers had relatively low capital costs. 相似文献
19.
Cooling energy needs,for mines in Northern Ontario,are mainly driven by the mining depth and its operation.Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock temperature,mining operations and climatic conditions.A breakdown of the various heat sources is outlined,for an underground mine producing 3500 tonnes per day of broken rock,taking into consideration the latent and sensible portions of that heat to properly assess the wet bulb global temperature.The resulting thermal loads indicate that cooling efforts would be needed both at surface and underground to maintain the temperature underground within the legal threshold.In winter the air might also have to be heated at surface and cooled underground,to ensure that icing does not occur in the inlet ventilation shaft-the main reason why cooling cannot be focussed solely at surface. 相似文献
20.
《矿业科学技术学报(英文版)》2019,29(4):599-602
It has long been postulated that a relationship exists between commodity price cycles and fatalities in the mining industry. Previous studies have found only weak correlations in this area. This study analyses the fatalities recorded in coal mines over the period 1985–2016 in the State of Queensland as a function of thermal coal price variation. The study finds that the relationship between fatalities and coal prices is not linear. One to two fatalities occur in most years independent of the thermal coal price. When the price of coal falls below AUD 55/tonne(non-inflation adjusted), the likelihood of an incident involving multiple fatalities increases. The probability can be estimated at 2 in 18 events(equivalent to 11%). This paper postulates that in difficult economic times, mining companies react by downsizing direct employees. If not carefully managed, this can result in loss of knowledge around safety systems, and reduced effectiveness of safety supervision. Because of labour cost advantages, some jobs previously undertaken by direct employees will be replaced by contractors. Increased contractor numbers contribute to increased risk of fatalities occurring, as contractors are over-represented in accident categories involving vehicle accidents, tire handling and crushing incidents. Mine inspectorates, mining, and mining contractor companies need to be especially vigilant to enforce health and safety management systems during periods of low coal prices. 相似文献