首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对碳纤维复合材料(CFRP)难加工的特性,文中采用PCD和HTi10刀具进行了CFRP铣削试验,对加工过程中的铣削力、刀具磨损和表面粗糙度进行了分析。结果表明:PCD和HTi10刀具的铣削力和表面粗糙度变化规律一致,均随转速的增大而减小,随进给速度的增大而增大,但PCD刀具的铣削力更小,加工质量更好;与HTi10相比,PCD刀具的铣削力对刀具磨损更加敏感,更适合应用在加工环境较好的条件下。在CFRP加工过程中,粗加工时优选HTi10刀具,精加工时优选PCD刀具,宜选用高转速、低进给的切削参数。  相似文献   

2.
以6061铝合金为研究对象,在高速加工中心上对6061铝合金进行铣削加工,对加工后的工件表面粗糙度、材料去除率以及铣削力进行相应的测量和分析,通过切削加工实验的方法针对不同工艺参数组合方式以及不同刀具材料对加工效率和加工质量的影响情况展开研究,从而确定最优工艺参数组合以及最佳刀具材料。研究结果表明:硬质合金刀具的切削性能优于TIALN涂层刀具,当主轴转速为8000r/min,进给速度为1600mm/min,切削深度为0.2mm时,工件的表面质量最好,表面粗糙度Ra可达到0.14μm,同时材料去除率可以达到46310mm3/min,当主轴转速为8000r/min,进给速度为1600mm/min,切削深度为0.05mm时,铣削力分别是10N(X),11N(Y),7N(Z),该工艺参数组合可以提高刀具耐用度。  相似文献   

3.
为研究硬质合金4刃等距立铣刀铣削加工参数对铣削TC4钛合金铣削切削力随时间的变化规律,基于ABAQUS有限元软件建立了硬质合金立铣刀铣削TC4钛合金工件的三维铣削模型,根据实际加工情况施加约束条件,以刀具的角速度和进给速度作为仿真试验的输入载荷变量,并设计了正交试验探讨不同铣削参数时TC4钛合金铣削切削力随时间的变化规律。根据仿真分析结果可知,当刀具角速度为314 rad/s、进给速度为1800 mm/min时其主分力正负变异系数最小分别为2.63%、1.31%,表明铣削过程中切削力随时间变化时较为平稳。若将进给分力作为切削力观测因素发现,当刀具角速度为265 rad/s、进给速度为1650 mm/min时切削力值较为平稳。从仿真结果得知背分力远小于主分力和进给分力,其值在0~10 N范围内波动,对铣削稳定性影响较小。综合分析可知,当刀具角速度为314 rad/s、进给速度为1800 mm/min时从切削力角度观测,既能使铣削过程具有良好稳定性又具有较好的加工效率。  相似文献   

4.
碳纤维/树脂基复合材料铣削表面粗糙度及表面形貌研究   总被引:1,自引:0,他引:1  
目的研究了CFRP材料铣削加工过程中,部分主要工艺对CFRP材料加工表面质量的影响规律,为工艺参数优化,提高此类零件的表面质量提供依据。方法设计了CFRP材料铣削中的切削参数、刀具结构、加工方法与加工表面粗糙度及表面形貌之间的单因素试验。通过单调改变一个切削参数而其余切削参数不变,得到了工件表面粗糙度和表面形貌随切削参数、刀具结构、加工方法的变化规律。结果当铣削速度增大时,工件的表面粗糙度变化不大,表面微坑缺陷的数量却有所增加,但变小、变浅。当进给速度增大时,工件表面粗糙度呈上升趋势,表面缺陷也随之增加。无涂层多齿刀具铣削后的工件表面粗糙度最大,其次是金刚石涂层多齿刀具铣削的工件,最小的是金刚石涂层交错齿刀具铣削的工件。多齿刀具加工后的表面有较多的微坑缺陷,但普遍深度较浅且面积较小。交错齿刀具对分层缺陷的抑制作用最明显,但在左旋和右旋刀齿交错处容易出现较严重的加工缺陷。与普通机械加工方法相比,超声振动加工方法得到的工件表面质量较好,可以有效减少表面微坑缺陷,改善CFRP铣削加工表面质量。结论 CFRP材料铣削加工时,为了获得较好的加工表面质量,切削参数应选用较高的切削速度和较低的进给速度,切削刀具宜选用多齿带涂层刀具。和普通机械加工方法相比,超声振动铣削加工方法更为有利于获得好的表面质量。  相似文献   

5.
以覆膜砂砂坯为研究对象,进行了覆膜砂砂坯铣削加工实验,研究了主轴转速、进给速度、铣削深度、铣削宽度等工艺参数对砂型表面粗糙度Ra的影响,并采用正交实验和极差分析了各个因素对加工砂型表面品质的影响。结果表明,铣削工艺参数对加工后砂型表面品质有显著的影响。砂型表面粗糙度随着进给速度和铣削深度增加而增加,随着主轴转速的增加而减少,铣削宽度对其影响不明显;影响程度大小顺序为:铣削深度进给速度主轴转速铣削宽度,通过降低铣削深度和进给速度,提高主轴转速,可提高砂型加工表面品质。  相似文献   

6.
针对镁合金铣削时表面质量差的问题,在主轴转速为10000rpm~30000rpm、进给速度为400mm/min~1000mm/min、铣削深度为0. 1mm~2mm、铣削宽度为0. 4mm~8mm的铣削参数范围内,采用正交实验法研究了AZ91D镁合金表面粗糙度的变化规律及与铣削参数之间的影响关系。利用多元线性回归方法建立了铣削参数和表面粗糙度之间的数学预测模型。通过对AZ91D镁合金已加工表面粗糙度和表面微观形貌的测量,揭示影响表面粗糙度的主要铣削参数。研究表明:在铣削深度和进给速度一定的情况下随着主轴转速的增大AZ91D镁合金表面质量变好,随着进给速度的增大AZ91D镁合金铣削表面质量变差。在相同的铣削参数条件下,逆铣所得的表面质量较好。当主轴转速大于12000rpm、铣削深度小于0. 2mm、进给速度小于400mm/min的铣削参数条件下,易获得较高的铣削表面质量。  相似文献   

7.
陈峻岐 《机床与液压》2021,49(5):115-119
为研究微织构对切削过程中产生的切削力和已加工表面粗糙度的影响,在聚晶立方氮化硼(PCBN)刀片前刀面制备与主切削刃平行的宽度为32.6μm的微沟槽织构。分别用微沟槽刀具和无织构刀具在主轴转速为450、500、600 r/min的条件下切削淬硬钢GCr15,分析切削力和已加工表面粗糙度。试验结果表明:微沟槽改善了刀具的切削性能,主切削力、进给力和切深力均小于无织构刀具;进给力、切深力随着主轴转速的增加均变大,主切削力表现为先减小再增大;用微沟槽织构刀具切削的已加工表面粗糙度大于无织构刀具,表明微沟槽不利于获得表面质量较好的工件;随着主轴转速增加,微沟槽刀具和无织构刀具切削的表面粗糙度均减小。  相似文献   

8.
针对钛合金在NaNO3电解液下易钝化而导致电解加工中断的问题,提出了钛合金微铣削辅助电解复合加工方法,首先设计了微铣削辅助电解复合加工工具,建立了复合加工深度轮廓的数学模型,并通过单因素试验研究了不同进给速度、主轴转速、加工电压对复合加工的影响。结果表明:这些参数中对复合加工深度和材料去除率影响最大的是进给速度,对轮廓定域性影响最大的是主轴转速。在进给速度3 mm/min、加工电压24 V、主轴转速2 000 r/min的试验参数下,加工获得的表面质量效果较好,加工深度轮廓试验曲线与数学模型达到了较好的吻合。  相似文献   

9.
刘曼 《机床与液压》2018,46(10):51-53
在模具型腔的加工过程中,拐角铣削加工是不可避免的,其中铣削力是影响工件加工质量和刀具寿命的重要因素。以90°拐角铣削加工为例,利用微元法建立了以刀具参数、进给速度和刀具旋转角度为参变量的铣削力模型,基于MATLAB的GUI模块开发了拐角铣削力仿真软件并进行仿真实验。将仿真结果与采用测力仪测量的结果进行比较,结果显示:仿真结果能有效预测拐角铣削力,为实际切削加工提供参考和理论支撑。  相似文献   

10.
采用多因素正交试验法进行铝合金铣削试验,测得了硬质合金立铣刀的铣削力。使用回归分析法获取了铣削力经验公式并验证其可靠性。与传统经验公式不同,切削速度独立成为一个因素。该公式确定了切削深度,切削宽度,切削速度,进给速度等切削参数对切削力的影响程度,并为设计刀具和选择切削用量提供了依据。  相似文献   

11.
为探究和改善蠕墨铸铁RuT500的铣削力,基于单因素试验,选用TiAlN/AlCrN、TiCN/Al2O3复合涂层硬质合金刀具对RuT500进行铣削加工,结合响应面探究涂层和铣削参数对RuT500铣削力的影响规律,并进行了铣削参数优化。结果表明:相比于TiAlN/AlCrN复合涂层硬质合金刀具,TiCN/Al2O3复合涂层硬质合金刀具铣削RuT500时会产生更大的铣削力;对蠕墨铸铁铣削力影响最显著的因素是背吃刀量,其次是进给量,铣削速度对蠕墨铸铁铣削力的影响程度相对较少;铣削参数交互作用对铣削力的影响具有一定的显著性;取较大的背吃刀量ap、适当的进给量f和较大的铣削速度vc时,可以获得较低的铣削力F和良好的加工效率。  相似文献   

12.
为了提高刀具对难加工材料的切削加工性能,降低切削力,延长刀具寿命,采用激光加工技术在TiAlN涂层刀具前、后刀面上制备出平行于主切削刃的沟槽型织构,对比研究变切削参数条件下铣削镍基合金的切削力变化情况。结果表明:在低转速、小吃刀量、低进给速度情况下,后刀面织构刀具的切削力小于前刀面织构刀具;背吃刀量对前刀面织构刀具的切削力增幅影响最大;主轴转速对后刀面织构刀具的切削力增幅影响最大。  相似文献   

13.
微铣削是一种加工微小零件和微小特征的高精、高效加工方法,为探究单晶铝微铣削表面质量,采用直径为0.4mm的硬质合金立铣刀,对单晶铝进行三因素五水平微铣削正交试验,通过极差分析找出影响表面质量的主次因素,即主轴转速的影响最大,铣削深度其次,进给速度最小,探讨了切削参数对单晶铝微铣削表面质量的影响规律;优化获得理想的工艺参数组合,即主轴转速为36000r/min,铣削深度为10μm,进给速度为80μm/s,此时即表面粗糙度最小,为0.782μm。研究结果为单晶材料的微铣削加工提供一定的理论和试验依据。  相似文献   

14.
针对纯铁切削过程中粘刀、刀具磨损快等问题,进行了纯铁和刀具材料的适配性试验,分别使用硬质合金刀具HTI10、涂层刀具VP15TF和金属陶瓷刀具NX3035车削电工纯铁DT4E工件,在车削过程中测量刀具磨损量,使用能谱分析(EDS)和扫描电子显微镜(SEM)研究刀具磨损机理,分析刀具磨损对切削性能的影响。结果表明:金属陶瓷刀具NX3035更适合纯铁的切削加工,刀具磨损最小、切削力最平稳,能获得最好的已加工表面质量;刀具在纯铁切削中的主要磨损形式为后刀面均匀磨损和V型沟槽磨损,主要磨损机理为高温下的粘结磨损、扩散磨损和氧化磨损的综合作用。  相似文献   

15.
为改善碳纤维增强树脂基复合材料(CFRP)的磨边质量及提高刀具的使用寿命,本研究基于"以磨代切"的思想,制备了钎焊金刚石磨头并对CFRP进行了磨边试验。为了评价CFRP磨边的加工质量,定义了CFRP磨边质量的评价参数——毛边因子,分析了主轴转速以及金刚石粒度对CFRP磨边质量的影响。试验结果表明:在相同的磨削深度、工件进给速度下,主轴转速的增加有助于提高CFRP磨边质量;金刚石粒径越小加工质量越好,细颗粒磨头的加工表面粗糙度更低。  相似文献   

16.
螺旋铣孔具有铣削力小、加工质量好、加工效率高的优点。Al/SiC是典型难加工材料,铣削过程中铣削力和转矩大。铣削力和转矩大会造成刀具及其工件严重变形,铣削力和转矩在很大程度上也会影响零件表面质量和使用性能。应用螺旋铣孔技术加工Al/SiC材料孔,研究了切削速度和进给率对铣削力和转矩的影响规律。实验结果表明切削速度和进给率对铣削力和转矩有重要影响。铣削力和转矩随切削速度增大先增大后减小。铣削力和转矩随进给率增加而增加。并从切屑几何形状、加工硬化、热软化、材料微观结构方面分析了铣削力随切削参数的变化规律。从铣削力和加工效率方面考虑实际生产中可以增加切削速度,适当降低进给率,为实际生产过程提供指导。  相似文献   

17.
刘浩文  程寓  苏飞 《机床与液压》2014,42(19):38-41
碳纤维增强复合材料(CFRP)属于典型的难加工材料。通过改变加工工艺参数,使用硬质合金成型铣刀,研究了碳纤维复合材料成型槽铣削时铣削力随铣削速度和进给速度的变化关系,并分析了铣削出口表面的加工缺陷及其与铣削力的变化关系。试验结果表明:铣削力随铣削速度的升高而降低,随进给量的增大而减小;铣削出口处表面主要缺陷为撕裂、毛刺和材料未切断等,其中撕裂为主要缺陷且撕裂面积随铣削力的变大而增大。  相似文献   

18.
在分析铣削过程能耗特性的基础上,针对难加工材料切削过程中能耗大、效率低、刀具受损严重等问题,提出一种考虑刀具主后刀面磨损的机床比能预测模型.应用田口法设计304不锈钢数控铣削正交试验,采用非线性回归拟合试验数据,分析切削参数和刀具磨损对机床比能的影响规律.结果表明:该机床比能预测模型的准确率在96%以上;在半精加工铣削参数范围内,机床比能随铣削深度、铣削宽度、进给速度和铣削速度的增大逐渐减小,随着刀具磨损值的增大呈线性增大.  相似文献   

19.
闫海鹏  吴玉厚 《表面技术》2017,46(7):245-249
目的探索PCD刀具磨损机理,以延长刀具使用寿命。方法设计正交试验,研究不同加工参数切削大理石对刀具磨损的影响情况。分析主轴转速、进给速度与切削深度对PCD刀具磨损量的影响规律,以优化切削参数来减小刀具磨损量。根据经验公式,建立单位时间刀具磨损量和固定行程磨损量模型。通过对试验过程刀具振动情况记录,结合刀具实际磨损情况,给出了刀具磨损等级。结果主轴转速的提高可以减少刀具磨损量,进给速度的增大会加剧刀具磨损,而切削深度小于1 mm时,其对刀具磨损量的影响很小,但切削深度大于1 mm时,继续增大切削深度会使刀具快速磨损。利用预测模型能够很好地对刀具磨损情况进行预判,根据磨损等级,得出刀具与机床发生共振时磨损最为严重,在刀具表面产生了明显的犁沟、磨损以及金刚石颗粒脱落。结论在实际加工中,通过提高主轴转速、降低进给速度以及减小切削深度有助于增强刀具的耐用度,避开共振切削参数可以有效降低刀具磨损,主轴转速、进给速度、切削深度分别为12000r/min、500 mm/min、0.5 mm时的切削效果较佳,有最小的刀具磨损量。  相似文献   

20.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号