共查询到20条相似文献,搜索用时 56 毫秒
1.
滚动轴承故障的EMD诊断方法研究 总被引:20,自引:1,他引:20
提出了一种基于经验模式分解(Empirical Mode Decomposition,EMD)的滚动轴承故障诊断方法。这种方法中,局部损伤滚动轴承产生的高频调幅信号成分被EMD分解作为本征模函数分离出来,然后用Hilbert变换得到其包络信号,计算包络谱,就能够提取滚动轴承故障特征频率。该方法被用于分析实验台上采集的具有内圈损伤及外圈损伤的滚动轴承振动信号。分析结果表明,与传统的包络解调方法相比,新方法能够更有效地提取轴承故障特征,诊断轴承故障,因而具有重要的实用价值。 相似文献
2.
EMD趋势分析方法及其应用研究 总被引:14,自引:0,他引:14
趋势分析是一种重要的设备状态监测与故障诊断方法,对分析较长时间范围内设备运行状态的变化具有重要意义。研究了一种基于经验模式分解(Empirical Mode Decomposition,EMD)的设备运行状态趋势分析方法。研究表明,与传统方法(如最小二乘法、低通滤波法)相比,经验模式分解能够更准确地提取信号趋势信息。应用于某炼油厂透平烟机故障诊断,表明这种基于经验模式分解的趋势分析方法能够有效提取设备运行趋势信息,消除采样中随机因素的影响,为准确评估设备运行状态、诊断故障提供可靠依据,具有重要的现场实用价值。 相似文献
3.
齿轮故障信号具有不平稳特性,故障信号特征向量难提取,典型的齿轮故障数据样本少。针对这些问题,本文提出基于经验模式分解( EMD)和支持向量机( SVM)相结合的诊断方法。首先通过传感器采集得到加速度信号,再通过EMD分解将加速度信号分解成多个稳定的本征模态函数信号( IMFs)。因为SVM能够在小样本集情况下建立决策规则,所以将IMFs的前几项作为特征向量输入SVM训练,对样本训练、测试并诊断故障。齿轮故障诊断实验结果表明:本文所提出方法诊断准确率达92.5%,可实现齿轮故障信息提取和齿轮故障的有效诊断。 相似文献
4.
一种基于EMD的振动信号时频分析新方法研究 总被引:2,自引:2,他引:2
基于经验模态分解(Empirical Mode Decomposition,EMD)的希尔伯特变换(Hibert Tram:formation,HT),是先把一列时间序列数据通过经验模态分解成本征模函数(Intrinsic Mode Function,IMF),然后经过希尔伯特变换获得瞬时频率的信号处理方法.针对HT求瞬时频率的不足,提出了把IMF分解成包络和纯调频信号,然后通过对纯调频信号进行反余弦求瞬时频率的新方法.通过对非线性仿真信号研究表明,该方法是有效的.把该方法应用于转子横向裂纹的时频分析.表明能把横向裂纹转子的扭振所形成的相位调制现象检测出来,获得了良好的效果.仿真和实测信号的分析结果说明,用新方法对振动信号进行时频分析是有效的.该研究成果能广泛地用于信号时频分析领域. 相似文献
5.
研究了强噪声混合条件下微弱信号的经验模式分解(EMD)问题,提出了一种基于随机共振降噪的EMD分解方法.该方法利用随机共振在微弱信号检测方面的独特优势,首先对有噪微弱信号进行随机共振输出,微弱信号得到降噪和加强后,再进行EMD分解.在仿真实验中,对随机共振输出前后的信号分别进行EMD分解,分析结果表明该方法不仅能够提高原始信号的信噪比,有效检测出被噪声淹没的微弱信号从而提高了EMD分解的质量,同时减少了EMD分解的层数,提高了运算效率. 相似文献
6.
7.
8.
9.
针对管道泄漏声发射检测信号的非平稳特征,提出了基于经验模态分解(EMD)的信号分析方法。该信号分析方法将管道泄漏产生的声发射信号通过EMD分解为多个平稳的固有模态函数(IMF)之和,选择包含声发射特征的若干IMF分量进行重构,可以提取到管道泄漏声发射信号的本质特征,消除噪声信号的干扰。通过对重构后的信号进行互相关分析计算,使基于声发射方法的管道泄漏检测的定位精度得到较大提高,验证了Hilbert-Huang变换是表征声发射信号的非平稳特征及信号参数提取的有效工具。 相似文献
10.
11.
一种改进的EMD图像分解算法 总被引:2,自引:0,他引:2
根据图像系统所固有的自相似性以及经验模式分解(EMD)算法的完备性和稳定性,给出了一种完整、快速、高效的EMD图像分解算法.该算法主要改进了EMD图像分解的曲面插值方法以及提取固有模式图像的结束条件,解决了一般EMD图像分解算法存在的图像分解算法速度慢、三角剖分导致漏点现象、图像分解算法的结束条件不明确的问题.最后,利用Madab进行的仿真实验验证了该算法的有效性. 相似文献
12.
13.
基于包络滤波的电磁超声检测数据降噪算法 总被引:1,自引:0,他引:1
针对电磁超声检测中的噪声问题,提出了基于包络滤波技术的噪声消除方法。该方法利用三次多项式插值曲线拟合法求取原始信号的包络曲线,按照设定的降噪阈值用上下包络线分别分段地对原始信号进行修正,最后对上下包络修正的结果取平均,从而实现平滑信号和抑制杂波的作用。该方法的处理过程不会损伤信号的主体特征,对于混叠在信号中的多种类型的高频噪声都能进行很好的抑制。利用电磁超声表面波的实验数据对算法进行了检验,实验结果表明,基于包络滤波的降噪算法可以有效地消除检测信号中的杂波和毛刺干扰,抑制噪声的幅度,提高信噪比。 相似文献
14.
15.
Curvelet变换表示曲线奇异函数的异向性及图像边缘时,具有比小波变换更优的表示特性。针对小波图像降噪存在的不足,分析基于wrapping算法的快速离散曲波变换的特点,提出结合循环平移、厄尔迭代方法和蒙特卡洛阈值规则的新消噪方法。该算法充分利用曲波系数的相关性,消除了因Curvelet变换缺乏平移不变性引起的图像"划痕"失真和"振铃"效应。实验结果表明,该算法与传统的小波消噪、二代小波消噪、小波包消噪和曲波硬阈值消噪相比,得到降噪图像的峰值信噪比更高,视觉效果更好。 相似文献
16.
针对传统的K-奇异值分解信号利用率不足,采用了稀疏贝叶斯学习预处理图像信号;将正交匹配追踪与改进之后的最速下降理论相结合;因噪声原子存在于字典更新之后得到的字典中,所以结合Bartlett检验法将噪声原子裁剪掉。实验结果表明,此方法相对于小波阈值去噪法、基于离散余弦变换字典稀疏表示等去噪方法能够更好地滤除噪声,保留图像边缘信息,获得更高的峰值信噪比,得到图像视觉效果更佳。 相似文献
17.
In image denoising algorithms, the noise is handled by either modifying term-by-term, i.e., individual pixels or block-by-block, i.e., group of pixels, using suitable shrinkage factor and threshold function. The shrinkage factor is generally a function of threshold and some other characteristics of the neighbouring pixels of the pixel to be thresholded (denoised). The threshold is determined in terms of the noise variance present in the image and its size. The VisuShrink, SureShrink, and NeighShrink methods are important denoising methods that provide good results. The first two, i.e., VisuShrink and SureShrink methods follow term-by-term approach, i.e., modify the individual pixel and the third one, i.e., NeighShrink and its variants: ModiNeighShrink, IIDMWD, and IAWDMBMC, follow block-by-block approach, i.e., modify the pixels in groups, in order to remove the noise. The VisuShrink, SureShrink, and NeighShrink methods however do not give very good visual quality because they remove too many coefficients due to their high threshold values. In this paper, we propose an image denoising method that uses the local parameters of the neighbouring coefficients of the pixel to be denoised in the noisy image. In our method, we propose two new shrinkage factors and the threshold at each decomposition level, which lead to better visual quality. We also establish the relationship between both the shrinkage factors. We compare the performance of our method with that of the VisuShrink and NeighShrink including various variants. Simulation results show that our proposed method has high peak signal-to-noise ratio and good visual quality of the image as compared to the traditional methods: Weiner filter, VisuShrink, SureShrink, NeighBlock, NeighShrink, ModiNeighShrink, LAWML, IIDMWT, and IAWDMBNC methods. 相似文献
18.
A function minimization algorithm that updates solutions based on approximated derivative information is proposed. The algorithm generates sample points with Gaussian white noise, and approximates derivatives based on stochastic sensitivity analysis. Unlike standard trust region methods which calculate gradients with n or more sample points, where n is the number of variables, the proposed algorithm allows the number of sample points M to be less than n. Furthermore, it ignores small amounts of noise within a trust region. This paper addresses the following two questions: how does the derivative approximation become worse when the number of sample points is small? Can the algorithm find good solutions with inexact derivative information when the objective landscape is noisy? Through intensive numerical experiments using quadratic functions, the algorithm is shown to be able to approximate derivatives when M is about n/10 or more. The experiments using a formulation of the traveling salesman problem show that the algorithm can find reasonably good solutions for noisy objective landscapes with inexact derivatives information. 相似文献
19.
20.
全变分自适应图像去噪模型 总被引:10,自引:1,他引:10
通过分析三种主要变分去噪模型(调和、全变分以及广义全变分模型)的优缺点,提出了一种基于全变分的自适应图像去噪模型。该模型根据噪声图像的信噪比,采用高斯滤波器对图像进行预处理,克服了全变分模型引入的阶梯效应;利用图像中每一像素点的梯度信息,自适应选取去噪模型中决定扩散强弱的参数p(x,y),使接近边缘处平滑较弱,远离边缘处平滑较强。数值实验表明,本方法在去除噪声的同时保留了图像的细节信息,取得了很好的降噪性能,其峰值信噪比(PSNR)在高噪声水平下,较其他变分方法至少提高1.0dB左右。 相似文献