首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity and ion/electron transference numbers in Al3O3 were determined in a sample configuration designed to eliminate influences of surface and gas-phase conduction on the bulk behavior. With decreasing O2 partial pressure over single-crystal Al2O3 at 1000° to 1650°C, the conductivity decreased, then remained constant, and finally increased when strongly reducing atmospheres were attained. The intermediate flat region became dominant at the lower temperatures. The emf measurements showed predominantly ionic conduction in the flat region; the electronic conduction state is exhibited in the branches of both ends. In pure O2 (1 atm) the conductivity above 1400°C was σ≃3×103 exp (–80 kcal/ RT ) Ω−1 cm−1, which corresponds to electronic conductivity. Below 1400°C, the activation energy was <57 kcal, corresponding to an extrinsic ionic condition. Polycrystalline samples of both undoped hot-pressed Al2O3 and MgO-doped Al2O3 showed significantly higher conductivity because of additional electronic conduction in the grain boundaries. The gas-phase conduction above 1200°C increased drastically with decreasing O2 partial pressure (below 10−10 atm).  相似文献   

2.
SrTiO3 (100) epitaxial films with thicknesses of 3, 1 μm, and 250 nm were prepared on MgO (100) substrates by pulsed-laser deposition. The electrical conductivities of the thin films were systematically investigated as a function of temperature and ambient oxygen partial pressure. This was made possible by using a specially designed measurement setup, allowing the reliable determination of resistances of up to 25 GΩ in the temperature range of 600°–1000°C under continuously adjustable oxygen partial pressures ranging from 10−20 to 1 bar. The capabilities of the measurement setup were tested thoroughly by measuring a SrTiO3 single crystal. The well-known characteristics, e.g., the decline of the conductivity with a slope of –1/4 under reducing conditions and the opposite +1/4 behavior in oxidizing atmospheres, are found in the log(σ)–log( p O2) profiles of the epitaxial films. However, the p -type conductivity decreases, and the n -type conductivity increases with decreasing film thickness. This phenomenon is attributed to the charge carrier redistribution in the surface space charge layers. Owing to the high surface-to-volume ratio, the space charge layers play an important role in thin films.  相似文献   

3.
High-dielectric-constant and low-loss ceramics in the (1− x )Nd(Zn1/2Ti1/2)O3– x SrTiO3 system have been prepared by the conventional mixed-oxide route and their microwave dielectric properties have been investigated. A two-phase system was confirmed by the X-ray diffraction patterns, the energy-dispersive X-ray spectrometer analysis, and the measured lattice parameters. Addition of SrTiO3, having a much smaller grain size in comparison with that of Nd(Zn1/2Ti1/2)O3, could effectively hold back abnormal grain growth in the Nd(Zn1/2Ti1/2)O3 matrix. Evaporation of Zn at high temperatures caused an increase in the dielectric loss of the system. The temperature coefficient of resonant frequency increases with increasing SrTiO3 content and tunes through zero at x =0.52. Specimens with x =0.52 possessed an excellent combination of microwave dielectric properties: ɛr∼54.2, Q × f ∼84 000 GHz, and τf∼0 ppm/°C. It is proposed as a suitable candidate material for today's 3G passive components and small-sized GPS patch antennas.  相似文献   

4.
The gas sensitivity of Ga2O3 thin-film n -type conductors was investigated at temperatures of 500–1000°C. Palladium dispersions whose particle sizes are dependent on the preceding annealing processes were deposited by a wet-chemical technique onto Ga2O3 thin-film ceramics. The palladium clusters and their temperature-dependent growth were detected using scanning electron microscopy micrographs and X-ray photoemission spectroscopy measurements. The effect of the palladium dispersions on the gas-sensitive behavior of the Ga2O3 ceramics was investigated in various O2/H2 mixtures in the N2 carrier gas at 700°C. The conductivity of the ceramics treated in this way was dependent on the O2 partial pressure, as well as on the H2 partial pressure of the surrounding gas atmosphere. The ceramic conductivity can be described as a function of the O2:H2 ratio, in accordance with the relation σ( p O2/ p H2/)−1/3.  相似文献   

5.
The standard Gibbs free energies of formation of CuAlO2 and CuAl2O4 were determined in the range 700° to 1100°C, using emf measurements on the galvanic cells (1) Pt,CuO +] Cu2O/CaO-ZrO2/O2,Pt; (2) Pt,Cu +] CuAlO2+] Al2O3/CaO-ZrO2/ Cu +] Cu2O,Pt; and (3) Pt,CuAl2O4+] CuAlO2+]Al2O3/CaO-ZrO2/O2,Pt. The results are compared with published information on the stability of these compounds. The entropy of transformation of CuO from tenorite to the rock-salt structure is evaluated from the present results and from earlier studies on the entropy of formation of spinels from oxides of the rock-salt and corundum structures. The temperatures corresponding to 3-phase equilibria in the system Cu2O-CuO-Al2O3 at specified O2 pressures calculated from the present results are discussed in reference to available phase diagrams.  相似文献   

6.
The oxidation reaction equilibrium constant and the holes mobility in p -type-semiconducting SrTiO3 single crystals were determined directly by simultaneous Hall and conductivity measurements between 500° and 1000°C. This information and the SrTiO3 defect model were used to interpret the electrical measurements taken on this substance which represents a model substance for semiconducting perovskites. Measurements with varying oxygen partial pressures showed that shifts of the crystal defect equilibrium give rise to changes in the carrier concentration with unchanged carrier mobility.  相似文献   

7.
Electronic conductivity and Seebeck coefficients of LaFeO3 were measured as a function of temperature (1000° to 1400°C) and P ( O 2) (105 to 10−13 Pa). Electronic conduction was found to be n-type in the lower P ( O2 ) range, and p -type in a higher P(O2) range. The calculated carrier mobilities suggest a hopping-type conduction mechanism. The carrier concentrations were calculated as a function of P ( O2 ) and the defect structure was described. It was found that the electrical properties of LaFeO3 are determined not only by the concentration of oxygen vacancies, but also by the La/Fe ratio.  相似文献   

8.
Equilibrium electrical conductivity of nonstoichiometric poly-crystalline BaTiO3 with varying Ba:Ti ratios was investigated at temperatures between 800° and 1200°C and P o2 from 10−22 to I atm. A transition from p -type to n -type conductivity was observed. Although the electrical conductivity of different specimens varied slightly, these differences did not appear to be a function of the Ba:Ti ratio in the region investigated. An intrinsic band-gap energy of ∼3.1 eV was calculated from the temperature dependence of the minimum conductivity. The O2 partial pressure dependence of the isothermal n -type conductivity cannot be described by simple defect models incorporating only singly or doubly ionized O vacancies. Likewise, simple defect models incorporating cation vacancies are not consistent with the observed pressure dependence of the p -type conductivity. More complex defect models which correspond to the observed behavior over the entire range of temperature and P o2 will be discussed in a subsequent paper.  相似文献   

9.
Nanoparticles of strontium titanates (SrTiO3, Sr2TiO4) and lead titanate (PbTiO3) have been obtained using reverse micelles as nanoreactors. Powder X-ray diffraction studies of the powders after calcining at 800°C show monophasic SrTiO3, Sr2TiO4, and PbTiO3. X-ray line broadening studies and transmission electron microscopic studies show spherical grains of 30–40 nm size for strontium titanates, while PbTiO3 is obtained in the form of nanorods. The dielectric constant of SrTiO3 and Sr2TiO4 is found to be 90 and 30, respectively, (at 100 kHz) for samples sintered at 1000°C. PbTiO3 shows a dielectric constant of 160 (at 100 kHz) after sintering at 900°C. The dielectric constant of Sr2TiO4 (with temperature) is highly stable. The temperature variation studies of the dielectric constant of PbTiO3 show a ferroelectric phase transition at 490°C (1 kHz). The T c varies with frequency and is found to decrease to 470°C at 100 kHz.  相似文献   

10.
The defect structure of monoclinic ZrO2 was studied by measuring the transfer numbers and electrical conductivity as functions of O2 pressure and temperature. The data suggest a defect structure of doubly ionized oxygen vacancies at low pressures, i.e. <10−19 atm, and singly ionized oxygen interstitials at pressures >10−9 atm. Zirconia is primarily an ionic conductor below #700°C and an electronic conductor at 700° to 1000°C for 10−22≤Po2≤1 atm.  相似文献   

11.
The Ca(B'1/2Nb1/2)O3 [B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, and In] complex perovskites have been prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscopy methods. The ceramics have dielectric constant (ɛr) in the range 23–32, normalized Q -factor ( Q u× f ) 11 000–38 000 GHz and temperature coefficient of resonant frequency (τf) −43–5.2 ppm/°C. The microwave dielectric properties of Ca(B'1/2Nb1/2)O3 ceramics are found to depend on the ionic radii of B'-site elements and tolerance factor ( t ). The substitution of Ba2+ and Sr2+ for Ca2+ resulted a phase transition in Ca(B'1/2Nb1/2)O3 ceramics. The (Ca0.05Ba0.95) (Y1/2Nb1/2)O3 has τf close to zero (1.2 ppm/°C) with ɛr=35 and Q u× f =48 500 GHz and is proposed as a useful material for base station applications. Dielectric properties of the Ca(B'1/2Nb1/2)O3 ceramics were tailored by the addition of TiO2 and CaTiO3.  相似文献   

12.
A Ce-TZP/platelike La(Co(Fe0.9Al0.1)11)O19 composite was synthesized in situ while sintering from a mixture of Ce-TZP, La(Fe0.9Al0.1)O3, Fe2O3, Al2O3, and CoO powders. Platelike La(Co(Fe0.9Al0.1)11)O19 crystals were grown in a dense Ce-TZP matrix after sintering at temperatures of 1200°–1350°C. The temperature range for sintering Ce-TZP/La(Fe,Al)12O19 composites was expanded widely by substituting Co2+ ions for Fe2+ ions in its structure. The highest value of the bending strength of the Ce-TZP/La(Co(Fe0.9Al0.1)11)O19 composites was 880 MPa, which was higher than that of the Ce-TZP/La(Fe,Al)12O19 composite (780 MPa) and Ce-TZP (513 MPa). The saturation magnetization of the Ce-TZP/La(Co(Fe0.9Al0.1)11)O19 composite was a constant value of 7.7 emu/g after the composite was sintered at 1200°–1350°C.  相似文献   

13.
Room-temperature optical absorption spectra, electron spin resonance spectra at 15° to 18°K, electrical conductivity, and emf measurements on concentration cells at 1620°C are analyzed and used to determine the defect structure of Codoped α-Al2O3. The crystals are mixed ionic and electronic conductors at 1620°C: ionic conduction occurs at 10-8 atm< p O2 < 10-3 atm, with triply charged interstitial Al ions as the major charge carriers, and electronic conduction occurs at 10-3 atm < p O2 < 1 atm, with holes as the major charge carriers. A defect model based on the charge compensation of divalent Co at Al sites by triply charged Al interstitials is proposed. The mobilities and activation energy of ions and holes, the oscillator strengths of Co2+ and Co3+ absorption bands, parameters for electron spin resonance spectra, level positions of substitutional Co2+ and an unknown donor, and equilibrium constants for defect formation reactions are determined.  相似文献   

14.
We investigate the relationship between microstructure and dielectric properties of textured SrTiO3 thin films deposited by radio-frequency magnetron sputtering on epitaxial Pt electrodes on sapphire substrates. The microstructures of Pt electrodes and SrTiO3 films are studied by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. SrTiO3 films grown on as-deposited and annealed Pt electrodes, respectively, consist of a mixture of (111)- and (110)-oriented grains. Temperature-dependent dielectric measurements show that differences in texture and microstructure are reflected in the Curie–Weiss behavior of the SrTiO3 films. Phenomenological models that account for the effects of thermal mismatch strain on the dielectric behavior are developed for different film textures. The models predict that at a given temperature, paraelectric (111)-oriented films of SrTiO3 on tensile substrates will have a higher Curie–Weiss temperature and a greater dielectric constant than (110)-oriented films or bulk SrTiO3. The experimental dielectric behavior is compared with the predictions from theory, and different contributions, such as interfacial layers, film stress, and microstructure, to the Curie–Weiss behavior are discussed.  相似文献   

15.
The standard Gibbs energy of formation of the spinel MgAl2O4 from component oxides, MgO and α-Al2O3, has been determined in the temperature range 900 to 1250 K using a solid-state cell incorporating single-crystal CaF2 as the solid electrolyte. The cell can be represented as—Pt,O2,MgO+MgF2|CaF2|MgF2+MgAl2O4+α-Al2O3,O2,Pt—The standard Gibbs energy of formation from binary oxides, computed from the reversible emf, can be represented by the expression—capdelta G °f,ox=−23600 − 5.91 T (±150) J/mol—The 'second-law' enthalpy of formation of MgAl2O4 obtained in this study is in good agreement with high-temperature solution calorimetric studies reported in the literature.  相似文献   

16.
Crack-free Pb(Zr,Ti)O3 (PZT) thin films with preferred orientation were prepared successfully on MgO (100), SrTiO3 (100), and Pt/Ti/SiO2/Si substrates from metal alkoxide solutions. Calcination of precursor films in a H2O─-O2 gas mixture was found to be effective not only for low-temperature crystallization of perovskite PZT, but also for obtaining the preferred orientation of PZT films. Single-phase PZT films with high preferred orientation were synthesized on MgO (100) and Pt/Ti/SiO2/Si substrates at 550° and 600°C for 2 h, respectively. The PZT film on the Pt/Ti/SiO2/Si substrate showed a permittivity of 520, tan δ of 0.03, a remanent polarization of 24 μC/cm2, and a coercive field of 54 kV/cm.  相似文献   

17.
Subsolidus phase relations in the system iron oride-Al2O2-Cr2O3 in air and at 1 atm. O2 pressure have been studied in the. temperature interval 1250° to 1500°C. At temperatures below 1318° C. only sesquioxides with hexagonal corundum structure are present as equilibrium phases. In the temperature interval 1318° to 1410°C. in air and 1318° to 1495° C. at 1 atm. O2, pressure the monoclinic phase Fe2O3. Al2O3 with some Cr2O3 in solid solution is present in the phase assemblage of certain mixtures. At temperatures above 1380°C. in air and above 1445°C. at 1 atm. O2 pressure a complex spinel solid solution is one of the phases present in appropriate composition areas of the system. X-ray data relating d- spacing to composition of solid solution phases are given.  相似文献   

18.
The electrical properties of a highly oriented thin layer of lithium vanadium beta bronze, β-LixV2O5, were investigated through dc and ac conductivity measurements. The ionic transference number was determined by a simplified polarization method employing ion-blocking electrodes. The electronic conductivity was 10 –3to 10–2 S cm–1 in air or N2 at 300–400°C, which was lower than that of a randomly oriented sintered specimen. The ionic conductivity was l0–2–10–1s cm–1 at 350°C, resulting in a high ion transference number of 0.8–0.9; it was higher than that reported for a bulk specimen. The lower electronic conductivity and higher ionic conductivity were assumed to be due to (1) the oriented microstructure, i.e., alignment of the b -axis along the substrate direction which enhanced Li+ conduction through tunnels along the b -axis, and (2) an open crystallo-graphic structure, which promoted ionic motion in an open channel between adjacent ( a-c ) places and suppressed the electron hopping process in the b -axis direction.  相似文献   

19.
Electrical conductivity, thermoelectric power, and weight change were measured for polycrystalline Ta2O5 from 900° to 1400°C. The predominant ionic and electronic defects in this temperature range are oxygen vacancies and electrons. The oxygen-vacancy and electron mobilities are 8.1 × 103exp (−1.8 eV/ k T) and ∼0.05 cm2/V-s, respectively. At O2 partial pressures near 1 atm, the ionic-defect concentration is essentially fixed by the presence of lower-valence cation impurities, and the total electrical conductivity is predominantly ionic, whereas at low P o2's the conductivity is electronic and proportional to P P o2−1/6.  相似文献   

20.
The effects of trace O2 levels on the nitridation of compacts made from silane-derived Si powders were studied in N2 atmospheres, with oxygen levels of either 5 ppm or 10 ppb (approximately). The nitriding kinetics were studied by thermogravimetric analysis as a function of temperature (1100–1200°C) and heating rate (5°C/min and 100°C/min). Reducing the O2 level in the nitriding gas enhanced conversion to Si3N4 at lower temperatures, reduced the composition variations within the samples, and decreased the α/β ratios. The results suggest that nucleation and rapid growth of Si3N4 at relatively low temperatures are possible only when the oxygen partial pressure in the system is below the threshold value for passive oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号