首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
马英瑞  陈晨  赵豪  朱颖  刘昆岩  侯星澜 《钻探工程》2021,48(S1):309-315
近年来,随着我国能源消费水平的提高,油气资源进口量逐年上升,寻找替代能源逐渐受到世界各国关注。油页岩是一种重要的石油替代能源,其储量巨大,分布广泛,开采前景广阔。地下原位转化开采油页岩具有低污染、占地面积小的优点。本文采用CMG-STARS数值模拟软件建立油页岩地下原位开采模型,通过原位注入热蒸汽法模拟了油页岩地下原位转化过程中的产油动态,并分析不同井距对开采的影响。结果表明,井距对油页岩开采有重要影响,井距越大,油页岩长期开采效果越好,但短期开采效果越差。最后对井距进行敏感性分析,结果表明井距40 m左右时产油效果最好。  相似文献   

2.
油页岩原位开采技术发展方向及趋势   总被引:4,自引:0,他引:4  
通过对国内油页岩开发利用技术现状的研究,分析了制约我国油页岩大规模开发利用的主要问题,并针对我国优质油页岩资源埋藏深的特点,考虑到环境保护和可持续发展等问题,提出油页岩原位开采技术是未来我国油页岩开发技术的必然趋势,并对目前国内外各种油页岩原位开采技术进行了分析和对比,提出了我国油页岩原位开采技术研究的思路.  相似文献   

3.
油页岩原位开采技术研究新进展   总被引:3,自引:0,他引:3  
原位开采技术已成为未来油页岩商业化大规模开采的发展趋势.本文重点分析了制约油页岩进入商业化阶段的能源需求及环境保护方面的重要影响条件:能源消耗、水资源污染、温室效应气体排放等,并针对这些影响条件详细阐述了PyroPhase公司风能利用技术、Heliosat公司太阳能利用技术、Idaho国家实验室核能利用和化学帷幕墙技术、壳牌公司冷冻墙技术、Los Alamos国家实验室CO2动态评估模型、Raytheon公司RF/CF技术.上述技术为我国油页岩原位开采技术的研发拓展了思路,也为我国进入油页岩等非常规油气资源的大规模开采阶段提供了重要的借鉴.  相似文献   

4.
农安油页岩水力压裂模拟及实验研究   总被引:1,自引:0,他引:1  
裂隙的数量和尺寸会影响油页岩原位开采的成本与效率,开采前需对油页岩进行水力压裂来建立或扩展裂隙,而压裂过程中的破裂压力是一个重要的参数。以农安矿区油页岩为研究对象,数值计算了其射孔完井下的水力压裂的破裂压力并采用真实破裂过程分析软件(二维渗流分析版)对水力压裂过程进行数值模拟,得到油页岩破裂压力。同时对该矿区油页岩压裂进行了实验对比,验证了数值模拟的有效性。对比结果表明模拟值、实验值较计算值均偏大。  相似文献   

5.
油页岩开采技术现状   总被引:7,自引:1,他引:6  
世界油页岩资源丰富,页岩油储量达世界石油探明可采储量的3倍。随着世界油气资源日益紧张,其开采程度将进一步提高。本文简要论述了传统油页岩资源开发工艺(干馏技术与燃烧发电技术)和SHELL公司的地下转换(ICP)技术。并进行对比,ICP技术在环保、成本及产物方面均有较大优势。我国应该加快发展该项技术以应对能源紧缺局面。  相似文献   

6.
我国多数煤层气储层低孔低渗、构造煤发育,储层改造效果难以保障,单井产气量和采收率低。选择高效的储层改造和增产技术,提高低效井产量,是当前煤层气产业发展的关键任务。本文系统剖析“地质储层条件、工程施工改造和排采管理控制”影响的低产原因,分析煤层气井二次改造相关技术及应用效果,为不同类型低效井针对性改造提供建议。煤层气井可二次改造的低产原因主要包括压裂裂缝扩展不足、裂缝/管柱煤粉堵塞和压降面积受限等,改造中需考虑煤体结构分布、初次裂缝形态、储层渗透性、产气产水量变化、排采及控制设备适用性等因素。二次改造技术分为物理法、化学法、微生物法和其他方法,物理法中二次水力压裂、间接压裂和无水压裂技术以及化学法中酸化增透和泡沫酸洗技术运用较广泛。二次改造应根据地质条件、初次改造效果、工程排采情况选择针对性技术,避免储层再次伤害,以实现有效改造,提高煤层气单井和井网产气量。  相似文献   

7.
针对油页岩地下原位裂解技术,提出了U形井注高温氮气加热油页岩的工艺方法并介绍了其优势。结合吉林省农安县油页岩的地层条件,建立原位裂解的物理模型,应用计算机软件进行了模拟,得出了U形井水平段长度与原位裂解效率之间的关系,优化了U形井水平段的长度以获得最高的加热效率,当水平段长度为150 m时,原位裂解的效率最高,加热效率因子为35.51℃/(m·d)。  相似文献   

8.
煤层气开采技术应用现状及其改进   总被引:4,自引:0,他引:4  
为解决我国煤层气平均采收率低的问题,从储层特征和开采技术2个方面进行了分析。在此基础上,探讨了不同开采技术与特定地质条件的开采技术适用性以及各种新型开采技术所具有的优势。研究结果认为,煤储层的"低含气饱和度、低渗透率、低储层压力"特征以及现行开采技术适用性差是我国煤层气采收率低的主要原因;套管(压裂)完井、超短半径水平井和多分支水平井综合运用应作为我国煤层气开采的主要模式。分析认为采用注入混合气体增产、多级强脉冲加载压裂、"固氮酶"、"虚拟产层"等各种新型开采技术来提高我国煤层气采收率,实现高效开采。  相似文献   

9.
我国碎软低渗煤储层分布广泛,然而由于其煤体松软、破碎、渗透性差,常规的直井/水平井煤储层直接压裂技术应用于碎软低渗煤储层强化及其煤层气地面开发的效果并不理想,碎软低渗煤储层煤层气的高效开发是制约我国煤层气产业大规模发展以及煤矿瓦斯高效治理的重要技术瓶颈。在系统分析我国碎软低渗煤储层特征及煤层气地面开发中存在的问题基础上,以水平井为基础井型,围绕间接压裂、应力释放和先固结后压裂3种不同的技术方向,梳理了目前碎软低渗煤储层强化与煤层气地面开发技术进展。归纳评述了以顶板间接压裂、夹矸层间接压裂以及硬煤分层间接压裂为内涵的间接压裂煤层气开发技术,以水力喷射造穴、气体动力造穴、扩孔+水力喷射+流体加卸载诱导失稳造穴、水力割缝为不同应力释放方式的应力释放煤层气开发技术,以及先微生物诱导碳酸钙固结碎软煤储层再进行水力压裂的先固结后压裂煤层气开发技术。间接压裂技术的工程实践探索已有较多积累,在地质条件适宜地区对碎软低渗煤储层强化取得了较好效果,而以应力释放为代表的碎软低渗煤储层强化新技术探索已取得重大进展,并进入工程试验和验证阶段。水平井应力释放技术针对碎软低渗煤储层特性和新的开发原理,其对储层改造潜...  相似文献   

10.
油页岩地下原位转化技术的关键是要把油页岩加热至高温裂解状态,采用井中直接加热的方式可实现对油页岩地层的直接加热,能量利用率最高,热损失最小,已经成为油页岩原位转化的主要加热方式。本文研究了一种新型的井下螺旋折流板式加热器,其传热通道呈螺旋形连续分布,能有效地增加气体和加热管的接触时间,可显著提高加热管表面的传热系数。本文重点研究螺旋折流板式井中加热器的表面传热特性,通过数值模拟及理论推导,综合分析了螺旋折流板的螺距和气体的质量流量对加热管表面传热系数的影响规律,得出了折流板螺距越小或气体质量流量越大加热管表面传热系数越高的结论,并求出了加热管表面传热系数随螺距和气体质量流量变化的拟合方程,为螺旋折流板加热器的后续设计提供了理论支撑。  相似文献   

11.
《煤炭学报》2021,46(8)
储层改造是获得低渗透煤层气井高产的重要手段,虽然我国深部煤层气资源丰富,但是由于煤储层渗透率低,面临着不同煤层气地质条件下的储层改造技术适应性差的困境。以沁水盆地长治北部地区为例,介绍了研究区地质概况和开发模式,分析了4种深部煤层气井水力压裂工艺技术及应用效果。结果显示以水平井为主要井型、实现压裂后井间干扰提产是规模化开发深部煤层气资源的主要途径。光套管压裂技术可实现大规模压裂,但容易造成储层污染,且可调性较差导致压裂效果偏差;连续油管压裂技术自动化程度和作业效率高,是目前的主流压裂技术,但是配套设施要求较高、成本高;常规油管压裂技术可实现射孔、压裂、封隔一体化作业,且射流效应定向性强,但是不能够带压作业,容易造成压力激动、压后堵前。为此,自主开发了常规油管带压压裂新技术。该技术以常规油管压裂技术为基础,在井口和井下油管内安装稳压装置控制压裂过程中油管内外的带压状态,配合钢丝绳打捞装置,优化上提下放程序,从而实现带压拖动压裂作业。该技术压裂施工曲线以压力平稳型为主,能够形成连续和平直的压裂裂缝通道,减少储层伤害;微地震监测显示压裂裂缝两翼长达70 m;试验井日产气量达4 000 m~3以上;同时节约了作业成本,提高了压裂效率。  相似文献   

12.
煤炭深部原位流态化开采的理论与技术体系   总被引:4,自引:0,他引:4       下载免费PDF全文
向地球深部要资源已成为国家战略。然而,现有的煤炭开采理论、技术及方法难以解决深部开采遇到的技术难题与环境污染问题,对煤炭开发与利用方式进行变革已势在必行。以煤炭技术变革为导向,以解决2 000 m以深煤炭资源开发的瓶颈难题为目标,系统阐述了煤炭深部原位开采的科学技术构想,提出了深部原位流态化开采的采动岩体力学理论、深部原位流态化开采的"三场"可视化理论、深部原位流态化开采的原位转化多物理场耦合理论、深部原位流态化开采的原位开采设计、转化与输运理论、深部原位流态化开采的地质保障技术、深部原位流态化开采的精准探测与导航技术、深部原位流态化开采的智能开拓布局技术、深部原位智能化洗选技术、深部原位采选充电气热一体化的流态化开采技术、深部原位无人化智能输送与提升技术、深部原位能量诱导物理破碎流态化开采技术、深部原位化学转化流态化开采技术、深部原位生物降解流态化开采技术、深部原位煤粉爆燃发电关键技术等。明确了煤炭深部原位流态化开采的战略路线,构建了煤炭深部原位流态化开采的理论与技术体系。  相似文献   

13.
油页岩原位开采地下冷冻墙缓冲距离研究   总被引:3,自引:1,他引:2  
油页岩原位高温开采,需要在矿区周边建立地下冷冻墙以阻止地下水的流入,防止油气的泄漏。油页岩的高温开采区与地下冷冻墙的冷冻区之间的缓冲距离影响油岩页的开采效果及地下冷冻墙的制冷效果,也影响整个工程的施工成本及运行费用。采用理论计算、数值模拟分析的方法,以最低成本为目标,对合理的缓冲距离进行了详细计算与分析,确定出了合理的缓冲距离,为油页岩高温开采地下冷冻墙的设计提供了理论指导。  相似文献   

14.
油页岩原位开采、矿山竖井施工、基坑支护等工程中,常采用地下冷冻墙进行止水和护壁。在地下冷冻墙制冷系统中,制冷液温度影响冻结交圈时间,进而影响地下冷冻墙的制冷效率,更影响工程的施工成本及运行费用。通过有限元模拟,对制冷过程中地下温度场进行理论分析,得出制冷液温度对地下温度场的影响规律,并对制冷液温度进行优化,得到在制冷机组制冷或风冷制冷方式下,制冷液温度应在-10~-15℃较为合适的结论,为提高地下冷冻墙制冷效率提供理论指导。  相似文献   

15.
页岩气是一种分布广泛且储量丰富的非常规能源,但由于其储层具有孔隙度小及渗透率低等特性,一直以来页岩气未得到大规模开采。直到近20年,页岩气开采技术才得到飞速发展,这主要得益于水力压裂技术的进步。压裂液是水力压裂的重要组成部分,其性能的优劣直接影响水力压裂施工的成败。通过调研国内外文献,结合国内外压裂液技术的发展历程,分析了页岩气开采中几种常用压裂液的优点、适应性及存在的问题,综述了两类新型的无水压裂技术。结合我国页岩气储层的特殊性及压裂技术发展的现状,提出了适于我国页岩气开采的压裂液技术发展的建议,并特别强调了在页岩气开发初期重视环保的重要性。  相似文献   

16.
针对页岩储层孔隙度、渗透率极低,需要压裂改造形成复杂的裂缝网络,才能保证页岩气的高效开发,梳理了直井压裂、水平井压裂、重复压裂、超高导流能力压裂及深层压裂的关键工艺,对比了泡沫、滑溜水、纤维、液化石油气等压裂液体系的优缺点及适用性,归纳了微地震监测、测斜仪监测等裂缝监测技术的原理和优缺点,并提出了页岩气压裂发展的建议。研究得出:我国已实现3 500 m以浅页岩气资源的大规模工业化开发,深层页岩气将成为页岩气开发的重要接替领域;未来压裂液体系发展呈低成本、低伤害、清洁环保、适应苛刻环境的趋势;重复压裂将成为页岩气增产的重要举措,裂缝监测技术是页岩气压裂优化设计的导向,“工厂化”压裂模式是页岩气压裂降低成本的有效途径。  相似文献   

17.
高压-工频电加热原位裂解油页岩是吉林大学与俄罗斯托木斯克理工大学合作研究的具有占地面积小、污染小、工艺简单等优点的油页岩开采技术。先对油页岩使用高压电击穿,再使用电加热的二步法,可以达到快速裂解油页岩的效果。为了确定裂解油页岩的工艺参数,以及更好地掌握高压-工频电加热裂解油页岩技术,本文对油页岩在有、无氧气条件下的裂解过程进行了热分析试验。试验表明,在有氧与无氧加热条件下,都可完成油页岩的裂解,且裂解过程是相同的,都属于二段式裂解过程。氧在油页岩加热裂解时具有驱动作用,可以降低油页岩的裂解温度、节省能量、提高裂解速度。  相似文献   

18.
我国深部煤炭资源储量丰富.煤炭地下气化可将其转化为燃气输出到地面,是深部煤炭原位流态化开采的重要途径.本文介绍了煤炭地下气化技术(UCG)的发展历程、技术现状以及中深部煤炭地下气化典型案例,基于现代煤炭地下气化技术体系剖析了深部煤炭地下气化的关键技术及技术攻关方向,展望了以天然气生产为目标的深部煤炭气化开采前景.UCG...  相似文献   

19.
我国煤储层的赋存特征概括为微孔隙、强吸附、低渗透,这些赋存特征严重抑制了煤层气的开采,在此基础上,储层改造技术被广泛提出.针对低透气性煤层,国内外学者提出水力压裂、水力割缝、预裂爆破等储层增透技术,这些技术均存在增透范围小、裂隙闭合快、水锁效应等问题.有学者提出采用化学方法改造煤层,利用化学试剂改变煤层理化性质继而达到...  相似文献   

20.
冶金矿山采矿技术的发展趋势及科技发展战略   总被引:13,自引:3,他引:10  
王运敏 《金属矿山》2006,(1):19-25,60
从露天矿、地下矿采矿设备,露天矿、地下矿采矿工艺,无废开采技术,数字化、智能化、无人化采矿等方面分析了国内外采矿技术的发展现状和趋势,提出了研究提高露天矿开采强度,完善无底柱崩落法,探索露天转地下开采技术,加强复杂难采矿床开采技术研究,建设数字矿山和生态矿山的矿产资源高效开采的发展模式,将对我国冶金矿产资源的开发产生积极的推动作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号