共查询到19条相似文献,搜索用时 78 毫秒
1.
复杂环境下的低照度图像具有光照分布不均、多光源叠加作用等特点,导致增强后的图像真实性不足、图像噪声增加等问题。针对低照度图像的特点,提出了一种基于深度注意力机制的低照度图像增强方法。设计生成对抗全局自注意力低照度增强网络(GSLE-GAN)以实现低照度图像的增强。在生成器中设计并使用注意力模块,提高模型对于光照分布特点的提取能力以及生成图像的真实性,采用局部鉴别器与全局鉴别器共同作用的方式使图像具有更丰富的细节信息,使用非配对数据及对模型进行训练,以提升模型的鲁棒性并进一步保证生成图像的真实性。通过对比实验,证明了文中所提方法的优越性,并在目标检测任务中证明了方法的有效性。 相似文献
2.
基于深度学习的低照度图像增强方法 总被引:1,自引:0,他引:1
在低照度环境下采集的图像往往亮度不足,导致在后续视觉任务中难以有效利用.针对这一问题,过去的低照度图像增强方法大多在极度低光场景中表现失败,甚至放大了图像中的底层噪声.为了解决这一难题,本文提出了 一种新的基于深度学习的端到端神经网络,该网络主要通过空间和通道双重注意力机制来抑制色差和噪声,其中空间注意力模块利用图像的... 相似文献
3.
4.
针对低照度图像增强算法在实现细节增强的同时对噪声抑制考虑的不足问题,该文提出一种基于深度卷积神经网络的无参考低照度图像增强方法。首先,基于Retinex理论从输入的低照度图像中提取照射分量和反射分量,并分别对二者进行优化,随后将优化后的照射分量和反射分量相乘得到增强后的图像;同时,将3D块匹配(BM3D)的去噪效果融合进反射分量的优化过程中;最后,采用无参考图像训练的方式,并配合改进后的趋势一致性损失对网络参数进行更新。实验结果表明,该文算法相较于现有的主流算法,可有效地提升低照度图像的对比度和亮度,同时保持图像的自然性。 相似文献
5.
6.
7.
8.
成像设备在暗光照环境下会出现对比度不高、图像细节信息丢失、颜色失真等问题,这会对视频监控、智能交通、人脸识别等应用场景产生巨大干扰。为了解决这一问题,本文提出了一种融合了注意力机制的的复合残差网络来实现对低照度图像的增强。该算法首先通过色彩空间上的转换(RGB-HSV)将亮度分量V放入构造的神经网络中,然后神经网络通过融合了注意力机制的多分支结构进行图像浅层特征的提取,接着经过复合残差网络提取深层特征,再经过图像重建得到增强后的V分量,最后通过分量融合实现图像增强。实验结果表明,对比目前国内外主流低照度图像增强算法,所提算法在主观视觉上对图像亮度与对比度有显著提升,在PSNR、SSIM指标上与传统算法的对比结果分别提升了约20%和15%,与深度学习算法的对比结果分别提升约9%和3%,不论是在人工合成的低照度图像还是真实、自然低照度图像中均有良好表现,基本满足图像增强的颜色自然、对比度和鲁棒性高等要求。 相似文献
9.
为了解决低照度图像亮度低、对比度低、信息丢失严重、颜色失真等问题,提出一种基于并联残差网络的低照度图像增强算法.该网络模型的主要思想是将交替残差模块与局部全局残差模块进行并联,运用改进的损失函数计算测试集损失,不断地调整网络参数,最终得到具有较强增强能力的网络模型.实验结果表明,本文网络模型能够有效提高图像亮度、对比度... 相似文献
10.
针对低照度图像增强模型中的亮度提升、噪声抑制以及保持纹理颜色一致性等难点问题,该文提出一种基于移位窗口自注意力机制的低照度图像增强方法。该文以U型结构为基本框架,以移位窗口多头自注意力模型为基础,构建了由编码器、解码器以及跳跃连接组成的图像增强网络。该网络将自注意力机制的特征提取优势应用到低照度图像增强领域,建立图像特征信息之间的长期依赖关系,能够有效获取全局特征。将所提方法与当前流行的算法进行定量和定性对比试验,主观感受上,该文方法显著提升了图像亮度,抑制图像噪声效果明显并较好地保持了纹理细节和颜色信息;在峰值信噪比(PSNR)、结构相似性(SSIM)和图像感知相似度(LPIPS)等客观指标方面,该方法较其他方法的最优值分别提高了0.35 dB, 0.041和0.031。实验结果表明,该文所提方法能够有效提升低照度图像的主观感受质量和客观评价指标,具有一定的应用价值。 相似文献
11.
The sensing light source of the line scan camera cannot be fully exposed in a low light environment due to the extremely small number of photons and high noise, which leads to a reduction in image quality. A multi-scale fusion residual encoder-decoder (FRED) was proposed to solve the problem. By directly learning the end-to-end mapping between light and dark images, FRED can enhance the image's brightness with the details and colors of the original image fully restored. A residual block (RB) was added to the network structure to increase feature diversity and speed up network training. Moreover, the addition of a dense context feature aggregation module (DCFAM) made up for the deficiency of spatial information in the deep network by aggregating the context's global multi-scale features. The experimental results show that the FRED is superior to most other algorithms in visual effect and quantitative evaluation of peak signa-to-noise ratio (PSNR) and structural similarity index measure (SSIM). For the factor that FRED can restore the brightness of images while representing the edge and color of the image effectively, a satisfactory visual quality is obtained under the enhancement of low-light. 相似文献
12.
13.
低照度彩色图像增强在生活中起着重要作用,传统的低照度彩色图像增强算法往往会引起图像的不同程度失真。为了增强低照度彩色图像而又不引起图像失真,本文提出了一种新的低照度图像自适应对比度增强算法。将分数阶微积分、传统Retinex变分法与分段对数变换饱和度增强法相结合,构造一种新的分数阶Retinex图像增强算法。实验结果表明,该方法具有增强图像对比度的同时又能保持边缘和纹理细节的能力。与传统低照度图像增强算法相比,能突出图像的细节纹理信息,同时图像色度和亮度也有明显改善。 相似文献
14.
Low-light images enhancement is a challenging task because enhancing image brightness and reducing image degradation should be considered simultaneously. Although existing deep learning-based methods improve the visibility of low-light images, many of them tend to lose details or sacrifice naturalness. To address these issues, we present a multi-stage network for low-light image enhancement, which consists of three sub-networks. More specifically, inspired by the Retinex theory and the bilateral grid technique, we first design a reflectance and illumination decomposition network to decompose an image into reflectance and illumination maps efficiently. To increase the brightness while preserving edge information, we then devise an attention-guided illumination adjustment network. The reflectance and the adjusted illumination maps are fused and refined by adversarial learning to reduce image degradation and improve image naturalness. Experiments are conducted on our rebuilt SICE low-light image dataset, which consists of 1380 real paired images and a public dataset LOL, which has 500 real paired images and 1000 synthetic paired images. Experimental results show that the proposed method outperforms state-of-the-art methods quantitatively and qualitatively. 相似文献
15.
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。 相似文献
16.
由于现有基于深度网络的图像增强模型直接学习退化图像与清晰图像之间的映射函数,忽略了观测模型保真项的约束,导致恢复的图像存在虚假纹理和细节丢失.本文提出了一种用于红外图像增强的改进深度网络,该网络将深度学习网络嵌入到一个迭代的图像增强任务中,通过图像增强模块和反投影模块交错优化,实现数据一致性约束.本文提出的深度网络不仅... 相似文献
17.
18.
Radio signal recognition based on image deep learning 总被引:1,自引:0,他引:1
A technical idea was innovatively proposed that uses image deep learning to solve the problem of radio signal recognition.First,the radio signal was transformed into a two-dimensional picture,and the radio signal recognition problem was transformed into the object detection problem in the field of image recognition.Then,the advanced achievements about image recognition were used to improve the intelligence and ability of radio signal recognition in complex electromagnetic environment.Based on the proposed idea,a novel radio signal recognition algorithm named RadioImageDet was proposed.The experimental results show that the algorithm can effectively identify the waveform types and time/frequency coordinates of radio signals.After training and testing on the self-collected data set with 12 types and 4 740 samples,the accuracy reaches 86.04% and the mAP value reaches 77.72,while the detection time is only 33 ms on the medium configured desktop computer. 相似文献
19.
针对水下图像纹理模糊和色偏严重等问题,提出了一种融合深度学习与多尺度导向滤波Retinex的水下图像增强方法。首先,将陆上图像采用纹理和直方图匹配法进行退化,构建退化水下图像失真的数据集并训练端到端卷积神经网络(convolutional neural network,CNN) 模型,利用该模型对原始水下图像进行颜色校正,得到色彩复原后的水下图像;然后,对色彩复原图像的亮度通道,采用多尺度Retinex(multi-scale Retinex,MSR) 方法得到纹理增强图像;最后,融合色彩复原图像中的颜色分量和纹理增强图像得到最终水下增强图像。本文利用仿真水下图像数据集和真实水下图像对提出方法进行性能测试。实验结果表明,所提方法的均方根误差、峰值信噪比、CIEDE2000和水下图像质量评价指标分别为0.302 0、17.239 2 dB、16.878 4和4.960 0,优于5种对比方法,增强后的水下图像更加真实自然。本文方法在校正水下图像颜色失真的同时,能有效提升纹理清晰度和对比度。 相似文献