首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
针对增程式电动汽车动力系统的参数匹配,本文采用增程式电动汽车的工作原理,对增程式电动汽车动力传动系统结构及其动力传动系统参数进行选择和匹配研究,并应用电动汽车仿真软件ADVISOR,建立了整车动力传动系统及关键部件的仿真模型。仿真结果表明,增程式电动汽车的续驶里程比纯电动汽车增加了100km以上,相对传统的燃油汽车,燃油消耗率降低50%以上,燃油经济性较好。该研究参数匹配合理,满足样车动力性要求,增程式电动汽车可作为传统汽车与新能源汽车之间的过渡产品而得到推广。  相似文献   

2.
针对纯电动汽车存在的不足,本文主要对增程式电动汽车动力参数匹配与控制策略进行研究。给出了整车参数及车辆动力参数,并借助AVL-Cruise和Simulink联合仿真平台,对增程式电动汽车动力参数进行匹配,对各部件进行选型,利用Stateflow搭建控制策略,将整车仿真模型和控制系统很好的联系起来并进行仿真验证。仿真结果表明,整车动力参数匹配比较合理,满足基本动力性和经济性要求,控制策略能使动力电池在合理区间工作,实现增程器高效工作,延长电动汽车续驶里程,降低有害气体的排放,与目前存在的公交汽车相比,百公里油耗明显降低。该研究为进一步研究增程式电动汽车提供了理论依据。  相似文献   

3.
纯电动汽车因续驶里程短和充电速度慢等原因制约了其进一步发展,增程式电动汽车在保证较低燃油消耗率的前提下弥补了纯电动汽车的缺陷。本文以前后轴独立驱动的增程式电动汽车为例,以保证整车的动力性能和降低燃油消耗率为出发点,提出了前后轴独立驱动增程式电动汽车的整车逻辑门限控制策略,该策略控制发动机的工作点随整车需求功率的变化而工作在不同的最优燃油消耗点上。仿真分析可知发动机在不同工况下均可以工作在低燃油消耗点附近,这表明该控制策略可实现对整车燃油经济性的良好控制。  相似文献   

4.
为提高混合动力汽车再生制动能量利用率与制动安全性,进一步提升续驶里程,提出一种基于多智能体的再生制动协同控制方法。构建交互式协同控制再生制动系统智能体及子智能体模型,系统智能体通过接受制动工况信息将蓄电池荷电状态(State of Charge,SOC)发送给蓄电池智能体,将再生制动分配系数与制动强度系数发送给车轮智能体和电机智能体;各子智能体以自身最高工作效率为目标,结合各自运行工况与其他智能体进行交互并将各自的任务实时反馈给系统智能体。最后在MATLAB/Simulink中建模,在CYC_UDDS工况下进行仿真验证。结果表明,电机制动力与机械制动力得到合理分配,充电电流控制在合理范围内,制动过程蓄电池SOC增加了近23%、制动能量利用率达17.43%,验证了所提方法的可行性和有效性。  相似文献   

5.
随着增程式电动汽车(EREV)方案在轿车和大型公交客车的成功应用,加之良好的燃油经济性和动力性,使其得到越来越多的关注.由于增程式电动汽车的结构形式和整车控制系统均不同于混合动力汽车(HEV)以及纯电动汽车(BEV),对其NVH特性进行分析研究正逐渐成为增程式电动车技术研究重点.以某款增程式电动客车为研究对象,针对该客车3种不同的工作模式:纯电动工作模式、增程式工作模式,低压给电模式,分别以车内噪声为研究内容,分析其结构布置形式以及整车控制策略,并深入分析该车车内噪声的分布特征以及形成机理,为高声品质增程式电动车的设计提供崭新的思路.  相似文献   

6.
为将一款纯电动汽车改装为增程式电动汽车,通过对増程器工作模式和原理的分析,对増程器的发动机与发电机参数进行匹配,得出合理的设计参数。结合MATLAB/Simulink与ADVISOR软件平台对改装前后的整车在相同循环工况(CYC_UDDS)下进行对比仿真分析。结果显示,改装后的增程式电动汽车续驶里程达177.8 km,且整车的动力性能与燃油经济性控制在合理的范围内,表明文中所提纯电动汽车改装方案是可行、有效的,为后续实车改造和整车路试实验提供参考依据。  相似文献   

7.
微型燃气涡轮机增程式电动汽车设计   总被引:2,自引:1,他引:1  
为提高纯电动轿车的适用性,弥补其续驶里程的缺陷,提出以微型燃气涡轮机作为增程器的增程式电动汽车开发方案.对主要动力总成及零部件进行分析,并根据分析确定整车参数,对主要零部件进行计算选型,在Advisor中对整车模型的可行性和燃油经济性进行了仿真验证.仿真结果表明:所提出的设计方案在纯电动模式下可以满足大部分人的需求,在增程模式下,平均每百公里等价油耗为2.02L.该设计方案提升车辆的燃料适应性,同时充分利用了电网能量,相比于传统车,燃油经济性也有很大提升.  相似文献   

8.
针对以燃料电池堆为增程器的增程式电动汽车不同于一般燃料电池汽车的特点,提出了一种新的综合考虑燃料电池效率和蓄电池充放电效率的能量管理策略.基于神经网络将策略实现,并在由ADVISOR建立的整车模型上进行仿真验证,取得了更长的续驶里程.  相似文献   

9.
为提高纯电动汽车的制动能量回收率,同时保证汽车制动稳定性与安全性,基于理想制动力分配曲线与模糊逻辑控制原理,制定了某前驱纯电动汽车制动能量回收控制策略。以制动强度、车速和电池荷电状态(SOC)为输入变量,再生制动力分配系数k为输出变量,设计了模糊控制器。在MATLAB/Simulink环境中构建制动能量回收控制策略模型,利用AVL CRUISE建立整车模型,并进行了联合仿真。在FTP75循环工况下仿真的结果表明,制定的制动能量回收控制策略在保证制动稳定性的同时,使制动能量回收率得以显著提高。  相似文献   

10.
提出了基于多智能体的车辆自动刹车系统(ABS)稳定性控制和再生制动过程中能量最优回收联合控制策略。首先基于图论搭建复合制动系统的车辆动力学模型,设计基于多智能体的滑移率最优稳定控制方法,并采用李亚普诺夫函数进行稳定性证明;然后采用液压制动补偿分配,根据电机和电池约束条件进行再生制动转矩的分配;最后利用Carsim和MATLAB-Simulink进行联合仿真。  相似文献   

11.
针对电动汽车再生制动力中制动力分配系数不合理的问题,本文以后驱式纯电动汽车为研究对象,通过分析制动力安全分配区域,在isight软件中对制动力分配区域优化,得出最优分配区间,并在此基础上提出新型再生制动控制策略。同时,在AVL_cruise中建立电动汽车整车模型,在Matlab/Simulink中建立再生制动控制策略模型,并在不同制动强度工况下进行联合仿真。仿真结果表明,与原控制策略相比,新控制策略在中制动强度制动时的能量回收率明显提高,在高、大制动强度时电动汽车的制动稳定性提升,说明该控制策略是合理的。该研究为电动汽车对再生制动深入研究能量回收率以及制动稳定性等方面提供了理论基础。  相似文献   

12.
就增程式电动汽车而言,其蓄能系统配置及能量管理策略对其自身等效燃油经济性、电池组寿命和动力性能有重要作用。本研究描述了本项目开发的搭载超级电容的增程式电动汽车复合式蓄能系统配置,开发了基于模糊逻辑的能量管理策略,并基于Matlab/Simulink仿真分析了二者协同作用下车辆表现的提升与电池组循环寿命的保护。其中,能量管理策略特别关注了加速踏板加速度信息,以更好的理解驾驶员的驾驶意图,进一步优化各蓄能部件及发电部件间的功率分配,起到预判和应对突发功率需求、保护电池组寿命的作用。仿真结果显示,车辆功率响应速度和动力性能得到提高、电池组寿命得到保护。  相似文献   

13.
整车控制器是纯电动汽车的核心部件,将复合电源纯电动汽车中的整车控制器作为研究对象。分析了整车控制系统的组成,设计了复合电源的结构,制定了复合电源的工作模式与能量管理控制策略,设计了基于SAE J1939标准的整车CAN通信网络,应用CRUISE软件搭建了复合电源纯电动汽车整车模型并进行仿真,验证了能量管理控制策略对复合电源能量分配的有效性。最后,搭建了整车控制器实验平台进行试验。测试结果表明,整车控制器软硬件设计可靠,复合电源能量控制策略合理。  相似文献   

14.
以某小型增程式电动汽车为原型,提出了一种基于动力分布设计的新构型方案。在此基础上进行了参数匹配与设备选型,并提出了适合这一构型方案的控制策略。结合匹配结果和试验数据,使用AMESim和Matlab/Simulink联合仿真平台搭建了整车数学模型,并针对动力性、纯电动续驶里程、再生制动效率及增程模式能耗等方面进行了仿真分析。结果表明:基于动力分布设计的增程式电动汽车,在不降低动力性能的前提下,拥有较小的整备质量和较高的再生制动效率,可提高纯电动续驶里程30%以上、降低增程模式能耗3%~6%,具有节能潜力。  相似文献   

15.
基于满足不同运行工况下整车性能指标要求,设计并选了增程式电动汽车的发动机、驱动电机、发电机和电池组等各组成部件,在AVL Cruise软件下搭建整车模型,进行样车动力性仿真实验,通过仿真分析结果来确定参数选配的合理性。  相似文献   

16.
针对传统电动汽车采用单一电池组作为储能系统导致动力电池组发生过充、过放和过热等问题,本文基于负载隔离式电动汽车工作特性,提出了两组动力电池交替放电为车辆提供能量。分别搭建两组动力电池仿真模型,结合动力电池运行基本参数,在Matlab/Simulink环境下建立了基于逻辑门限值方法的动力电池充放电切换控制策略;在Advisor中串联式混合动力电动汽车的基础上进行二次开发,将两组动力电池的模型以及充放电切换控制策略模块嵌入到顶层模型中,结合工况对整车进行仿真实验分析。实验结果表明,该动力电池仿真模型所建立的动力电池充放电切换控制策略可行,可以满足负载隔离式电动汽车在不同工况下对功率的需求。该研究具有一定的实际应用价值。  相似文献   

17.
为提高纯电动汽车再生制动能量回收率,采用以总制动力需求、车速以及电池SOC为输入,以电机制动力系数为输出的mamdani型模糊控制器,确定电机制动力与机械制动力之间的比例分配;同时考虑汽车制动的安全性和稳定性,提出了采用理想制动力分配方法对前、后轮制动力进行分配.在ADVISOR上建立了模糊控制算法的仿真模型,并结合典型道路工况CYC_UDDS进行仿真,通过与ADVISOR自带的策略以及文献[7]提出的模糊控制策略的仿真结果进行对比,结果表明:采用改进的模糊控制算法后,电池SOC提高了2%,制动能量回收效率提高了33.7%,整车系统的效率提高了3.1%,表明文中提出的改进的模糊控制算法能提高纯电动汽车制动能量回收的效果,有效延长纯电动汽车的续航里程.  相似文献   

18.
根据欧洲经济委员会(ECE)法规曲线、理想制动力分配I曲线以及f曲线明确了前后轴制动力分配范围,结合典型的再生制动控制策略,对前后轴制动力以及机电制动力进行分配并优化,设计了一种基于不同附着系数路面的多模式模糊控制策略,该模糊控制以车速v、制动强度z和电池剩余电量(SOC)为输入,以电机制动比例K为输出,通过将该基于模糊控制的Simulink模型与Cruise整车模型进行联合仿真。结果表明:本文提出的控制策略不但能高效地回收制动能量,提高电动汽车续航里程,而且能进一步增强制动的安全性和稳定性。  相似文献   

19.
针对负载隔离式电动汽车能量利用率低的问题,本文主要对负载隔离式电动汽车再生制动控制策略进行研究。通过对负载隔离式电动汽车制动动力学和ECE法规进行分析,得出满足条件的制动力分配系数及制动力分配的上下限,据此提出基于制动强度划分的再生制动控制策略。在Matlab/Simulink搭建再生制动控制模型,并将模型嵌入到Advisor中进行仿真分析。仿真结果表明,与原控制策略相比,在CYC_NEDC工况下行驶时,汽车制动时电机输出功率提高,电机损失功率减少,电机输出的瞬时电流增大,说明该再生制动控制策略明显提高了电动汽车制动能量的回收效率。该控制策略为负载隔离式电动汽车进一步提高能量利用率提供了理论基础。  相似文献   

20.
插电式混合动力汽车中电动机和发动机的能量优化控制方法在提高车辆续航里程及驾驶性能方面有重要影响,本文结合传统的差值补充策略、负载跟随策略、持续最优策略3种控制策略提出一种基于多模式切换的能量优化管理方法,设计了5种工作模式在不同电池SOC下的模式转移方法和功率分配方法,旨在使汽车在满足驱动需求的前提下针对不同的行驶状态都能够降低能量消耗.结合某PHEV车型整车仿真模型对提出的能量优化管理方法进行离线仿真,并将离线仿真结果与传统能量控制方法的仿真结果进行对比,结果表明基于多模式切换的能量优化管理方法提高了汽车燃油经济性和汽车续航里程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号