共查询到20条相似文献,搜索用时 15 毫秒
1.
采用四步法将聚乙烯亚胺(PEI)接枝到聚丙烯腈(PAN)纤维上制备了PAN-PEI纤维。将PAN-PEI纤维处理p H值为1. 3,Cu~(2+),Ni~(2+),Ca~(2+),Mg~(2+),Fe~(2+)/Fe~(3+)含量分别为784. 20,4. 60,4. 10,4. 70,1. 10 mg/L的含Cu~(2+)废水,研究了PAN-PEI纤维对废水中的金属离子的吸附和回收效果。结果表明:各用3. 0 g PANPEI纤维分3次振荡吸附10 min处理已调至p H值为4. 1的废水样,经第1,2,3次吸附处理后废液中Cu~(2+)含量分别为93. 60,18. 16,0. 96 mg/L,Ni~(2+)含量分别为1. 25,0. 35,0. 07 mg/L,其中Ni~(2+)经2次、Cu~(2+)经3次处理达到国家排放标准;模拟实际吸附回收过程,回收液中Cu~(2+)含量为45 280 mg/L,与原液相比,浓缩了58倍,其盐酸盐占比为99. 43%;如分开处理含Ni~(2+)废水,则回收的氯化铜纯度可达99. 73%; PAN-PEI纤维吸附Cu~(2+)时对共存Ca~(2+),Mg~(2+),Fe~(2+)/Fe~(3+)选择性系数分别为20. 23,22. 08,3. 25。 相似文献
2.
3.
用聚丙烯腈(PAN)四氮唑螯合纤维对工业废水中重金属铜离子进行吸附。探究溶液pH、初始浓度和吸附温度等对吸附的影响。建立了吸附动力学曲线和吸附等温线模型,对纤维再生性能进行了研究。结果表明:pH=5. 0时,纤维对铜离子吸附容量达到最大(Qe=156. 46 mg·g-1),吸附过程符合准二级动力学模型,采用Langmuir等温吸附模型和Freundlich等温吸附模型进行热力学拟合,表明Langmuir等温吸附拟合线性较好,5次重复再生后,纤维吸附能力没有明显变化。 相似文献
4.
以腈纶、水合肼、氢氧化钠为原料制得羧酸钠型离子交换纤维,研究了该纤维对Cu2+的吸附性能。结果表明:羧酸钠型离子交换纤维的交换容量可达4.89 mmol/g,25℃下,pH为5.0时,20 min可达到饱和吸附;CuSO4溶液浓度为2.32 mmoL/L,床流速为2.7 BV/min,穿透吸附时的床体积为149.0时,该纤维对Cu2+的动态穿透沉淀和吸附容量为1.66 mmol/L;该纤维经5次再生后其交换容量由再生前的4.89 mmol/g升高到4.97 mmol/g,饱和吸附时再生纤维吸附容量达到再生前的95.6%,其再生性能良好。 相似文献
5.
《合成纤维工业》2017,(6):28-32
采用两步法将聚乙烯亚胺(PEI)接枝到聚丙烯腈(PAN)纤维上制备胺基螯合纤维即PEI-PAN纤维,研究了该纤维对水中Cu~(2+)的吸附性能,并对纤维的力学性能、元素组成和表面形貌进行了表征。结果表明:胺基化反应的接枝率和反应程度分别为8.72%和10.0%;纤维的力学性能在水解后下降,而在胺基化后会提升;在p H值为4~5、Cu~(2+)浓度为0~400 mg/L时,Langmuir方程可以较好地描述PEI-PAN纤维对Cu~(2+)的吸附过程,饱和吸附量为327.7 mg/g;Cu~(2+)浓度为5.0 mg/L(工业废水超标10倍)和3.0 mg/L(生活饮用水超标3倍)时,PEI-PAN纤维对的吸附量分别为74.4 mg/g和48.8 mg/g;准二级动力学方程可以较好地拟合PEI-PAN纤维对Cu~(2+)的吸附速率曲线,半饱和吸附时间为190 s;使用1.5 mol/L HCl溶液洗脱、1.0 mol/L氨水再生,再生18次后PEI-PAN纤维对Cu~(2+)的吸附量为初始吸附量的97.5%。 相似文献
6.
聚丙烯腈基螯合纤维的研究进展 总被引:4,自引:0,他引:4
夏友谊 《高科技纤维与应用》2006,31(4):34-39
回顾了聚丙烯腈基螯合纤维近年的研究进展,介绍了聚丙烯腈基螯合纤维的制备方法,螯合机理以及其应用情况,并对今后聚丙烯腈基螯合纤维的发展进行了展望。认为开发具有消臭、抗菌等多功能纤维,制备纳米金属/聚丙烯腈基复合纤维,将会被更多关注,前景乐观。 相似文献
7.
<正> 一 引言 在碳纤维的生产过程中,PAN纤维经过热稳定化处理成为预氧化纤维(PANOF),再经过高温碳化,制成碳纤维。随着热稳定化温度的升高和时间的增长,大分子链上的氰基发生环化聚合,生成稳定的梯型结构: 相似文献
8.
9.
10.
以聚丙烯腈(PAN)纤维为基体,聚乙烯亚胺(PEI)为交联剂,采用水解—交联—水解工艺制备得到PAN基交联水解羧酸纤维(PEIXPAN-COOH纤维),并对其结构与性能进行了表征。结果表明:通过三步法制得的PEIXPAN-COOH纤维经红外光谱证实为目标产物,且纤维表面平整度较基体PAN纤维降低;纤维的羧基含量为4. 5 mmol/g,断裂强度为4. 43 cN/dtex,断裂伸长率为31. 1%,纤维的初始模量为39. 33 cN/dtex,与基体PAN纤维相比,其断裂强度和断裂伸长率分别下降了2. 6%和5. 8%,初始模量提高了6. 6%; PEIX-PAN-COOH纤维吸水性较好,其增重倍数为31,而基体PAN纤维增重倍数仅为6。 相似文献
11.
采用FT-IR、SEM对PP-g-GMA-DETA螯合纤维进行表征,并探究纤维对Pb~(2+)的吸附特性及吸附机理。结果表明,PP-g-GMA-DETA螯合纤维对Pb~(2+)的饱和吸附量为52.03 mg/g;在pH为2~5时吸附量随着pH的升高而增大,且随Pb~(2+)初始浓度的增加而增大,并在Na~+、Mg~(2+)、Ca~(2+)、Fe~(3+)存在的竞争吸附过程中表现出选择性;吸附过程符合准二级动力学模型,主要受化学作用控制,半饱和吸附时间为13 min;吸附等温线符合Langmuir吸附等温线模型,为单分子层吸附,纤维可再生重复使用。 相似文献
12.
采用改进的Hummer法制得氧化石墨烯(GO),用巯基乙胺对GO进行改性,制得巯基化氧化石墨烯(SH-GO),对有关产物的形貌和结构进行了表征,考察了p H值、SH-GO用量、吸附时间等因素对SH-GO吸附Cu2+效果的影响。结果表明,GO呈无序分布的片状结构,含有较多的含氧基团;p H值为5时的吸附效果最佳;SH-GO投加量为200mg·L-1时,吸附效率可达98.8%;120min可达到吸附平衡;吸附过程符合准二级动力学模型和朗格缪尔等温吸附方程;SH-GO重复使用性能良好。 相似文献
13.
14.
15.
电位分析法用于可再生甲壳质对Cu2+吸附的动力学研究 总被引:2,自引:0,他引:2
首次利用铜离子选择性电极,跟踪观察了可再生甲壳质吸附Cu^2 的动力这行为。实验结果表明,可再生甲壳质中的氨基作为配体,与Cu^2 具有良好的螯合作用,随着Cu^2 浓度的增加,吸附速度减慢,吸附剂与吸附质间的相互作用力降低,表观吸附速率常数减少。以铜离子选择性电极作为吸附质分子探针的电位分析技术,电极具有良好的能斯特响应,相关系数达0.994,系统具有良好的重现性和稳定性,可用于Cu^2 的在线追踪以进行吸附动力学研究,这为固-液吸附的动力学研究提供一新的方法和手段。 相似文献
16.
改性聚丙烯腈纤维对铝镉汞离子的吸附性能研究 总被引:12,自引:0,他引:12
以改性聚丙腈纤维(简称改性纤维,用L表示)为吸附剂,对水溶液中的重金属离子Pb2^ 、Cd^2 、Hg2^ 进行螯合吸附。实验证明,L对它们有很强的吸附能力,通过实验确定出L对各离子吸附的最佳条件参数:温度、时间、pH值、离子浓度等;并发现L对Pb2^ 、Hg2^ 有累积吸附作用;吸附后的纤维可以反复再生使用,并找出再生的最佳条件。而且,在一定的浓度范围内三种离子的吸附都能符合Freybdkucg型等温方程式。 相似文献
17.
18.
19.
20.
利用海藻酸钙包埋枝孢霉对水中Cu2+吸附性能进行研究。实验结果表明:当海藻酸钙质量分数为3%,CaC l2质量分数为4%,菌体积分数为15%时,包埋制得的固定化小球具有较好的机械性能和较高的吸附量,生物吸附平衡时间3 h。固定化空白小球和活菌的最佳pH值分别为3.5和4.0。在质量浓度为30—500 mg/L时,吸附过程较好地符合Langmu ir吸附模型。在浓度为0.1 mol/L的多种解吸剂中,HNO3解吸效果最好,解吸率达到93.84%。包埋小球重复利用3次,吸附性能没有明显变化。 相似文献