首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10^-5 S·cm^-1.  相似文献   

2.
1 INTRODUCTIONSolid polymer electrolytes have recently re ceived a great deal of attention due to their poten tial application in solid state batteries, their advan tageous mechanical properties and easily fabrica ting into thin films[1,2]. Among them, the salt in polymer electrolytes with low glass transition tem perature (Tg ) and low concentration of lithiumsalts have been paid most attention to. But theyhave relatively low conductivity at room tempera ture. T…  相似文献   

3.
用聚乙二醇、遥爪羟基聚苯乙烯和二氯甲烷在氢氧化钾存在下合成了氧亚甲基连接的聚氧乙烯-聚苯乙烯多嵌段聚合物,研究了聚合物与LiClO4络合物的离子导电性能,以及聚合物的结晶性能,力学性能,以电导率最高的络合物为电解质,N1+xV3O8复合物和Li片分别为正、负极组装了薄型锂电池并测定其放电性能。  相似文献   

4.
PEI-PEO基全固态电解质的性能   总被引:1,自引:1,他引:0  
聚氧乙烯(PEO)基全固态复合电解质可作为高能全固态锂电池的电解质膜材料.采用溶液浇铸法,以PEO为基质,LiC1O4为锂盐,聚乙烯亚胺(PEI)和柠檬酸(CA)及无机纳米粉体(NCA)做性能改进剂,制备PEI-PEO-LiC1O4-CA-NCA全固态复合聚合物电解质(SCPE)膜,对其进行X射线衍射(XRD)表征和交...  相似文献   

5.
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs) were prepared by in-situ reaction, in which ethyl-orthosilicate (TEOS) was catalyzed by HC1 and NH3·H2O, respectively. The ionic conductivity, the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra, contact angle method and TEM. The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5 and 1.1×10-5 S/cm respectively at 30 ℃. The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2, and influences the surface energy and conductivity of CPE films directly. Meanwhile, the ionic conductivity is related to the surface energy.  相似文献   

6.
采用差示扫描量热法(DSC)和交流阻抗方法对EC增塑的(PEO)16-LiClO4聚电解质进行了研究,结果表明,(PEO)16LiClO4/EC体系的玻璃化转变温度(Tg)及PEO的结晶度(Xc)降低,电导率(δ)增加,且δ与温度(T)的关系符合Arrhenius行为,另外还提出了离子导电聚电解质/不锈钢(SS)这种结构的界面双层结构和交流阻抗谱图的模拟等效电路,所提出的模型等效电路能较好地模拟实验数据,具有一定的普适性。  相似文献   

7.
以偏氟乙烯和六氟丙烯共聚物为基体,通过与聚甲基丙烯酸甲酯共混,加入导电盐LiPFs、增塑剂聚乙烯吡咯烷酮,制备了高电导率的复合凝胶聚合物电解质(CGPE)。用红外光谱测试了聚合物电解质膜的结构,用交流阻抗法测试了CGPE的导电性能,用线性扫描伏安法研究了它的电化学稳定性。测试了以CGPE为电解质制备的锂离子电池的充放电性能。结果表明,当聚甲基丙烯酸甲酯(PMMA)质量分数为20%时,CGPE电导率大于10^-3s/cm,在4.65V电化学窗口以下稳定。以磷酸亚铁锂为正极时,在0.1C和0.2C倍率下放电时,聚合物电解质电池的首次放电容量分别为138mAh/g和98.3mAh/g。  相似文献   

8.
为改善纳米粒子在聚合物电解质中的分散效果,采用倒相制膜法,以纳米SiO2为填料,以OP-10为分散剂,制备复合微孔聚偏氟乙烯-六氟丙烯基电解质PVDF-HFP-SiO2(OP-10).用SEM、XRD、交流阻抗法等测试手段对电解质的微观形貌、内部结构和电化学相关性能等进行表征,结果表明:SiO2的加入降低了聚合物电解质膜的结晶度,增强了电解质的拉伸强度,提高了PVDF-HFP-SiO2(OP-10)聚合物电解质的电导率,在20 ℃时,可达到490×10-3 S·cm-1,电化学稳定窗口为53 V,电解质的离子迁移数为083.分散剂OP-10的加入改善了纳米SiO2与基质的界面相容性,改善了SiO2在基质中的分散度.  相似文献   

9.
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10^-5 S/cm at 20℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.  相似文献   

10.
An appropriate amount of toluene 2,4-diisocyanate(TDI) was added into polyether([(CH2CH2O)13 CH2O]n/Li salt electrolyte to form a cross-linked network,with improving the film proces sability and thermal stability.The relation between the structure and ioinc conductive properties of the cross-lined polyether electrolytes was investigated by means of Fourier transform infra-red spectroscopy(FTIR),differential scanning calorimetry(DSC),mechanical property and AC impedance spectroscopy.The electrolytes system is found to have two glass transitions,and it is found that the two Tgs increase with increasing salt concentration.At the some Li salt concentration,the conductivity of cross-liked polyether/LiN(CF3SO2)2 complex system is higher than that of LiClo4,At EO/Li=25:1(mol ratio),the former conductivity changes with temperature,while the later coincids with Arrhenius formula(σ=Ae^-Ea/RT).The cross-linked polyether/LiN(CF3 SO2)2 electrolyte exhibits the maximum σ=10^-4.75S/cm at 30℃.  相似文献   

11.
针对LiTi2(PO4)3基固态电解质电导率低的问题,采用浙江三门高岭土矿作为主要原料,以高温固相法制备铝、镁、硅共掺杂钠超离子导体(NASICON)型快离子导体Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12.研究掺杂比例、温度对固态电解质离子电导率的影响.结果表明,组成为Li1.8Al0.1Mg0.3Ti1.6Si0.1P2.9O12固体电解质在423 K时有最高离子电导率7.86×10-4 S·cm-1.以该组成固态电解质为基片,喷雾热解原位制备Al/ Li1+xV3O8/ Li1.8Al0.1Mg0.3Ti1.6Si0.1 P2.9O12 /C全固态电池并在1.8~3.9 V电压区间进行50次充放电测试.该电池具有较好的稳定性及循环容量保持能力.30次循环以后放电容量基本稳定在190~205 mAh·g-1之间,充放电效率大于90%.  相似文献   

12.
以丙烯酸、聚乙烯醇、N,N-亚甲基双丙烯酰胺等为原料,采用水溶液聚合法制备聚乙烯醇/聚丙烯酸水凝胶聚合物基质,与6 mol/LKOH溶液制成吸液率约为173%凝胶聚合物电解质,产物在室温时电导率可达567.3 ms.cm-1。并且讨论了聚乙烯醇/聚丙烯酸凝胶聚合物电解质的导电机理及凝胶聚合物吸液率与电导率的关系。  相似文献   

13.
Polymerelectrolytemembranesarepaidatten tionstobecauseoftheirimportancetothedevelop mentoflithiumionbatteriesinrecentyears.There aretwomethodsforpreparingporouspolymermem branes:oneisthe“Bellcore”technique[1];theother isthephase inversionprocess,whichhasbeenfo cusedonforitsfacility,convenienceandlesspollu tion[2].However,themembranespreparedbythese twomethodsshowpoormechanicalpropertiesbecause ofhighporositiesandmoreelectrolyteuptakes.Introductionsofnanoscaleinorganicfillerssuchassil ica(Si…  相似文献   

14.
为改善低电导率Li2FeSiO4材料的电化学性能,采用真空固相法制备了Li2FeSiO4/C复合正极材料.利用X-射线衍射(XRD)、扫描电子显微镜(SEM)、激光粒径分析技术(LS)对比分析了样品掺碳前后的物相和形貌特点.结果表明:除了轻微缩小的晶粒和增加的Li2SiO3杂质含量,掺碳后产物的晶构和形态无其他显著变化.恒流充放电和容量间歇滴定技术(CITT)结果表明:Li2FeSiO4材料晶构转变需经多次循环(至少大于5次)完成;随掺碳后锂离子传输性能的改善,材料电化学性能有所提高,但基于固相合成工艺的碳包覆效果并不理想.  相似文献   

15.
Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.  相似文献   

16.
为了提高聚偏氟乙烯-六氟丙烯(PVDF-HFP)基电解质的离子电导率和机械强度,采用倒相法,制备出复合聚偏氟乙烯-六氟丙烯基电解质PVDF-HFP-Si O2.复合电解质的形貌、结构和电化学性能分别用SEM、XRD和交流阻抗法进行了表征.结果表明:纳米Si O2的加入增强了聚合物的拉伸强度,同时有效降低了聚合物的结晶度.PVDF-HFP-Si O2分解电压为5.1V,离子迁移数为0.81,聚合物电解质的电导率(25℃)为4.84×10-3S·cm-1.  相似文献   

17.
Inorganic additives-added PEO-based solid composite polymer electrolyte(SCPE)was prepared u-sing solution casting method. The effects of LiNi_(0.8)Co_(0.2)O_2 on the physical and chemical properties of the elec-trolyte were investigated. The products were characterized by X-ray diffraction(XRD), Fourier transform infra-red spectrometer(FFIR)and differential scanning calorimetry(DSC). The electrochemical performances of SCPE were measured. Results show that properties of the SCPE are improved significantly by adding LiNi_(0.8)Co_(0.2)O_2 into PEO polymer electrolyte. Its conductivity reaches 5 × 10~(-4)S/cm(25℃)while retaining good mechanical and processing properties.  相似文献   

18.
The chemical composition of the passivating layer formed on nano SnO2 anodes in 1 M LiClO4 (ethylene carbonate)EC (dimethyl carbonate)DMC at different charge/discharge states in lithium secondary batteries was studied using extra reflectance FTIR spectra. Results show that solvent decomposition reaction that generally occurs on the surface of carbon and alkali metal electrodes also takes place on nano-SnO2 anode, and the major constituent of the passivating layer is Li2CO3 and ROCO2Li. Formation of the passivating layer would certainly lead to the irreversible capacity loss.  相似文献   

19.
采用高温固相反应方法合成锂离子电池正极Li_2Fe_(1-x-y)Mn_xNi_ySiO_4/C复合材料,并采用X-ray线衍射、扫描电子显微镜和电化学分析方法,研究了Ni和Mn离子共掺杂及碳修饰复合改性对复合材料结构和性能的影响。结果表明,复合改性没有对材料的晶体结构造成改变,镍锰离子共掺杂和表面碳包覆能有效提高材料的比容量和循环性能;以C/32倍率充放电,复合掺杂得到的Li_2Fe_(0.6)Mn_(0.2)Ni_(0.2)SiO_4/C材料样品的电化学性能最优,根据实测结果,该复合材料的首次放电比容量达到149 m Ah·g~(-1),充放电循环10次以后容量保持率仍有95.3%。  相似文献   

20.
针对固态聚合物电解质室温电导率较低的问题,采用刮膜法制备了PEO/PMMA/LiClO_4/AM PS共混聚合物电解质,考察了2-丙烯酰胺-2-甲基丙磺酸(AM PS)的端基磺酸基团对电解质性能的影响.结果表明,添加AMPS后,红外图谱中出现了由C—O的拉伸振动和SO_3~(2-)的络合作用所引起的尖峰.PMMA与PEO共混后,大大降低了PEO的结晶度,且添加AMPS后,电解质形成了完全均相体系.AMPS的添加使得电解质的电导率明显提升了两个数量级.当AMPS的质量分数为1.3%时,电解质的室温电导率达到最大值.添加同样含有端基磺酸基团的液晶离聚物(LCI)后,电解质的电导率无明显提升,因而可以选择磺酸基团质量比更高的AMPS作为添加剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号