首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-starting continuous-wave passive modelocking of an Er:Yb:glass laser at 1535 nm is demonstrated with the first antimonide semiconductor saturable absorber mirror (SESAM). The Er:Yb:glass laser produces 20 ps pulses at 61 MHz. This laser was used to characterise the nonlinear optical parameters of the metal organic vapour phase epitaxy grown SESAM.  相似文献   

2.
We demonstrate the first antimonide (AlGaAsSb) semiconductor saturable absorber mirror (SESAM) for stable passive mode locking of an Er : Yb : glass laser at 10 GHz and a center wavelength of 1535 nm generating 4.7-ps pulses. The nearly resonant SESAM is InP-based, grown by metal-organic vapor phase epitaxy and optimized for high pulse repetition rates. We fully characterized the linear and nonlinear optical parameters: The saturation fluence is 80 /spl mu/J/cm/sup 2/, the modulation depth is 0.4% and the nonsaturable losses are 0.35%. A 1/e decay time of 95 ps is achieved after wet chemical etching of the 10-nm InP cap on top of the absorber.  相似文献   

3.
Passive modelocking in one-section monolithic semiconductor laser diodes based on a quantum dash active layer at very high repetition rate (>40 GHz), in the 1.5 /spl mu/m window, is demonstrated. 800 fs pulse generation, without any pulse compression scheme, at 134 GHz, is reported. A 50 kHz linewidth of the radiofrequency (RF) spectrum at 42 GHz is also demonstrated, the lowest value reported for any semiconductor passively modelocked laser.  相似文献   

4.
Colliding-pulse modelocked quantum dot lasers   总被引:1,自引:0,他引:1  
Colliding pulse modelocking is demonstrated for the first time in quantum dot lasers. Using 3.9 mm-long devices with a 245 /spl mu/m-long central absorber, 7 ps pulses at a repetition rate of 20 GHz is obtained. For Gaussian pulses a time-bandwidth product close to the Fourier transform limit is determined. These results confirm the potential of quantum dot lasers for high repetition rate harmonic modelocking.  相似文献   

5.
A simple, compact, fully fibre integrated source of /spl sim/100 fs pulses at a wavelength of 1.1 /spl mu/m is reported. 4 ps pulses at 1063 nm from a modelocked fibre laser were amplified to 23 mW in a ytterbium-doped fibre amplifier and subsequently propagated through 62 m of holey fibre with a zero dispersion wavelength at 1040 nm. Soliton formation, breakup and self frequency shift resulted in the formation of /spl sim/100 fs pulses at 1.1 /spl mu/m. Wavelength tunability from 1113 to 1220 nm is demonstrated.  相似文献   

6.
A large core area (1257 /spl mu/m/sup 2/) Tm/sup 3+/-doped ZBLAN fibre laser operated at 1.47 /spl mu/m is demonstrated. The pump source is a Nd:YAG laser operated at 1.064 /spl mu/m. A laser output power of 1.56 W continuous wave was obtained for 5.2 W of launched pump power. The slope efficiency with respect to the launched pump power was measured to be 33%.  相似文献   

7.
The authors report the first demonstration of an optically pumped passively modelocked surface-emitting semiconductor laser operating in the 1.5 /spl mu/m region. The modelocked laser emits pulses of 6.5 ps full width at half maximum duration with an average power of 13.5 mW at a fundamental repetition rate of 1.342 GHz. The peak power was 1.6 W.  相似文献   

8.
By growing the InGaAs active layer at temperatures lower than in conventional growth, we extended the lasing wavelength and presented the high reliability in InGaAs strained-quantum-well laser diodes. Equivalent I-L characteristics were obtained for 1.02-, 1.05-, and 1.06-/spl mu/m laser diodes with a cavity length of 1200 /spl mu/m. Maximum output power as high as 800 mW and fundamental transverse mode operation at up to 400 mW were obtained at 1.06 /spl mu/m and an 1800-/spl mu/m cavity. Stable operation was observed for over 14 000 h under auto-power-control of 225 mW at 50/spl deg/C for the 1.02-, 1.05-, and 1.06-/spl mu/m lasers with a 900-/spl mu/m cavity.  相似文献   

9.
Directly controlled, stable modelocking of a Ti:sapphire oscillator is demonstrated using a commercially available electrically pumped vertical extended-cavity surface-emitting laser as an active saturable absorber mirror. Modelocking is controlled by applying a pulsed current to the saturable absorber. Pulse durations of /spl sim/330 ps are observed.  相似文献   

10.
Link processing with individual laser pulses has become an industry standard process in IC memory chip manufacturing. It is gaining wide acceptance in analog chip reprogramming and tuning as well. Traditional laser processing, using the standard output of Nd:YAG at 1.064-/spl mu/m and Nd:YLF at 1.047-/spl mu/m laser wavelengths, works well for polysilicon links but is not satisfactory for metal links. This paper describes the physics modeling and computer simulation of the laser link process and a new technique of using 1.3-/spl mu/m laser wavelength for the process. While light absorption of link materials at 1.064-, 1.047-, and 1.3-/spl mu/m wavelengths are relatively the same, the absorption of a Si substrate at 1.3 /spl mu/m is considerably less. The improved absorption contrast between the link material and silicon substrate at 1.3-/spl mu/m delivers a much wider laser process window. Both simulation and experimental results are given and discussed. A brief introduction of another new technique, which uses UV laser pulses for link processing, is given. This UV laser process delivers a laser beam spot size much smaller than 1.5 /spl mu/m.  相似文献   

11.
Analysis and operation of a Q-switched Tm/sup 3+/-doped silica fiber laser in the wavelength region of 2 /spl mu/m is described when pumped with a Nd:YAG laser operating at 1.319 /spl mu/m. A large core of 17-/spl mu/m diameter was used to increase the laser gain volume, allowing high pump-power absorption and an output of high pulse energy and peak power. An acoustooptic modulator was used as Q-switching element and operated at repetition rates up to 30 kHz. A maximum peak output power of greater than 4 kW and a pulse duration at full-width at half-maximum of 150 ns has been obtained. This is the first report of high peak-power operation of the thulium-doped silica fiber laser.  相似文献   

12.
We report continuous-wave (CW) operation of a 4.3-/spl mu/m quantum-cascade laser from 80 K to 313 K. For a high-reflectivity-coated 11-/spl mu/m-wide and 4-mm-long laser, CW output powers of 1.34 W at 80 K and 26 mW at 313 K are achieved. At 298 K, the CW threshold current density of 1.5 kA/cm/sup 2/ is observed with a CW output power of 166 mW and maximum wall-plug efficiency of 1.47%. The CW emission wavelength varies from 4.15 /spl mu/m at 80 K to 4.34 /spl mu/m at 298 K, corresponding to a temperature-tuning rate of 0.87 nm/K. The beam full-width at half-maximum values for the parallel and the perpendicular far-field patterns are 26/spl deg/ and 49/spl deg/ in CW mode, respectively.  相似文献   

13.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

14.
Low-threshold operation was demonstrated for a 1.34-/spl mu/m vertical-cavity surface-emitting laser (VCSEL) with GaInNAs quantum wells (QWs) grown by metal-organic vapor-phase epitaxy. Optimizing the growth conditions and QW structure of the GaInNAs active layers resulted in edge-emitting lasers that oscillated with low threshold current densities of 0.87 kA/cm/sup 2/ at 1.34 /spl mu/m and 1.1 kA/cm/sup 2/ at 1.38 /spl mu/m, respectively. The VCSEL had a low threshold current of 2.8 mA and a lasing wavelength of 1.342 /spl mu/m at room temperature and operated up to 60/spl deg/C.  相似文献   

15.
The influence of energy-transfer upconversion (ETU) between neighboring ions in the upper and lower laser levels of erbium 3-/spl mu/m continuous-wave lasers on heat generation and thermal lensing is investigated. It is shown that the multiphonon relaxations following each ETU process generate significant heat dissipation in the crystal. This undesired effect is an unavoidable consequence of the efficient energy recycling by ETU in erbium 3-/spl mu/m crystal lasers, but is further enhanced under nonlasing conditions. Similar mechanisms may affect future erbium 3-/spl mu/m fiber lasers. In a three-dimensional finite-element calculation, excitation densities, upconversion rates, heat generation, temperature profiles, and thermal lensing are calculated for a LiYF/sub 4/:Er/sup 3+/ 3-/spl mu/m laser. In the chosen example, the fraction of the absorbed pump power converted to heat is 40% under lasing and 72% under nonlasing conditions. The heat generation in a LiYF/sub 4/:Er/sup 3+/ 3-/spl mu/m laser is 1.7 and the thermal-lens power up to 2.2 times larger than in a LiYF/sub 4/:Nd/sup 3+/ 1-/spl mu/m laser under equivalent pump conditions, thus, also putting a higher risk of rod fracture on the erbium system.  相似文献   

16.
Pulsed laser action above room temperature at /spl lambda//spl sime/11.3 /spl mu/m has been achieved in quantum cascade devices grown by metal organic vapour phase epitaxy (MOVPE). The emission wavelength (/spl lambda//spl sime/11.3 /spl mu/m) is the longest reported for QC lasers grown with this technique. The peak output power at 77 K is approximately 315 mW, decreasing to /spl sime/100 mW at room temperature. The devices display laser operation up to at least 350 K.  相似文献   

17.
This paper describes in detail the amplification characteristics of gain-shifted thulium-doped fiber amplifiers (GS-TDFAs) operating in the 1480to 1510-nm wavelength region (1.49-/spl mu/m S-band) for use in wavelength-division-multiplexing (WDM) systems. Gain shifting of a TDFA, which normally has a gain band at 1.47 /spl mu/m (S/sup +/-band), is achieved by two types of dual-wavelength pumping: (1) 1.05 and 1.56 /spl mu/m or (2) 1.4 and 1.56 /spl mu/m. The main pump source at 1.05 or 1.4 /spl mu/m creates population inversion between /sup 3/F/sub 4/ (upper laser level) and /sup 3/H/sub 4/ (lower laser level), while the auxiliary pump source at 1.56 /spl mu/m reduces the average fractional inversion down to approximately 0.4, which is a desired level for gain shifting. We show experimentally that the former provides a low internal noise figure (<4 dB) due to high fractional inversion at the input end of a thulium fiber, while the latter provides a very high optical efficiency but a higher internal noise figure (/spl sim/5 dB) due to the lower fractional inversion at the input end. These characteristics were verified by numerical simulation based on a comprehensive rate equation modeling. We demonstrated a 1.4- and 1.56-/spl mu/m laser-diode-pumped GS-TDFA with an optical efficiency of 29.3% and high output power of +21.5 dBm. Gain flatness and tilt control were also investigated. These results strongly confirm the feasibility of using GS-TDFAs in practical ultralarge-capacity WDM networks.  相似文献   

18.
Single crystals of monoclinic BaY/sub 2/F/sub 8/, doped with different Nd/sup 3+/ concentrations, were successfully grown by means of the Czochralski method. Here, we present a polarized infrared (IR) spectroscopic investigation and diode-pumped continuous-wave laser results in the 1 /spl mu/m wavelength region. Moreover for the first time 1.3 /spl mu/m laser emission has been characterized. Q-switching results in the 1-/spl mu/m region are also presented.  相似文献   

19.
In this letter continuous operation is realized from two-dimensional slab photonic crystal lasers at room temperature. The laser structure is prepared by wafer fusion of an InGaAsP MQW active layer with an AlAs layer that is wet oxidized into an Al/sub 2/O/sub 3/ layer subsequently. The incident threshold pump power at 0.98 /spl mu/m is 9.2 mW for a /spl sim/10-/spl mu/m-diameter hexagonal cavity lasing at 1.6 /spl mu/m.  相似文献   

20.
This paper presents a single-chip mixed-signal IC for a hearing aid system. The IC consumes 270 /spl mu/A of supply current at a 1.1-V battery voltage. The presented circuit and architectural design techniques reduce the total IC power to 297 /spl mu/W, a level where up to 70 days of lifetime is achieved at 10 h/day for a small zinc-air battery. The measured input referred noise for the entire channel is 2.8 /spl mu/Vrms and the average THD in the nominal operating region is 0.02%. The jitter for the on-board ring oscillator is 147 ps rms. The chip area is 12 mm/sup 2/ in a 0.6-/spl mu/m 3.3-V mixed-signal CMOS process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号