首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The breakdown voltage, the upturn voltage, and the nonlinearity of the ZnO varistors are significantly influenced by the Sb2O3 and SiO2 contents, as well as by the β→γ transition of the Bi2O3 phase. The lattice parameter of spinel is influenced by the coexisting Bi2O3 phase. Antimony oxide disperses into the powders of ZnO and other additives in the early stage of sintering, and finally gathers again as particles of spinel which may play an important role in the improvement of the nonlinearity by stressing the interfaces of two ZnO grains.  相似文献   

2.
Vaporization of Bi2O3 in microwave-sintered ZnO varistors is discussed in this study. The Bi2O3 vaporization of ZnO varistors sintered by a conventional electric furnace is also studied for comparison. The results show that the Bi2O3 vaporization in microwave-sintered ZnO varistors is more homogenous from the surface to the inside of the sample, which results from the special thermal gradient inside the microwave-sintered samples, and we also find out that the Bi2O3 vaporization directly affects the electrical properties of ZnO varistors. Microwave-sintered samples exhibit more excellent electrical properties than the conventional ones because the homogenous Bi2O3 vaporization leads to more uniform microstructures.  相似文献   

3.
The nonlinear volt-ampere characteristics and small-signal ac capacitance and resistance of sintered ZnO containing 0.5 mol% Bi2O3 were measured. Many of the electrical properties are related directly to the microstructure, which consists of conductive ZnO grains separated by a continuous amorphous Bl2O3, phase. The origin of the nonlinear conduction in the intergranular phase was confirmed by experiments with evaporated thin films. The proposed conduction mechanism in varistors containing ZnO and Bi2O3 is a combination of hopping and tunneling in the amorphous phase.  相似文献   

4.
The effects of the oxide additives MnO2, Co3O4, and Sb2O3, commonly incorporated in commercial Bi2O3-doped ZnO varistors, on the current–voltage characteristics and microstructure of 0.25 mol% V2O5-doped ZnO varistors have been studied. MnO2 is the most significant additive in terms of its effects on varistor performance. Varistor performance can also be improved by increasing the V2O5 content to 0.5 mol% in a ZnO ceramic containing 1 mol% MnO2. Further increases in the V2O5 content of 1 mol% MnO2-doped material cause a deterioration in varistor behavior. The microstructure of the samples consists mainly of ZnO grains with zinc vanadates as the minority secondary phases. Additional spinel phase is formed when Sb2O3 is incorporated.  相似文献   

5.
Diffusion of molten Bi2O3 into the grain boundaries of sintered, alumina-doped (0.23 and 0.7 mol%) ZnO pellets resulted in varistors with breakdown voltages in the 3–5 V range and nonlinearity coefficients of 10–24. The varistors were fabricated by spreading a thin layer of Bi2O3 powder on the surface of ZnO pellets and heating the combination to various temperatures (860–1155°C) and different times. The highest nonlinearity coefficients (20–24) and lowest breakdown voltages (3–5 V) were recorded in samples annealed at 860°C for 35 min. Longer annealing times and/or higher temperatures resulted in progressively higher breakdown voltages. Eventually the devices became insulating, which was attributed to the formation of an insulating Bi2O3 layer between the grains. Separate wetting experiments have shown that the penetration of Bi2O3 into ZnO grain boundaries was a strong function of alumina doping —the penetration rate was decreased by a factor of 5–7 as the ZnO was doped with as little as 0.2 mol% alumina. It is this slowing down of the penetration of the ZnO grain boundaries that is believed to be critical in the development of the low breakdown voltages observed.  相似文献   

6.
Sintering of Zinc Oxide Doped with Antimony Oxide and Bismuth Oxide   总被引:1,自引:0,他引:1  
The phase change, densification, and microstructure development of ZnO doped with both Bi2O3 and Sb2O3 are studied to better understand the sintering behavior of ZnO varistors. The densification behavior is related to the formation of pyrochlore and liquid phases; the densification is retarded by the former and promoted by the latter. The pyrochlore phase, whose composition is Bi3/2ZnSb3/2O7, appears below 700°C. The formation temperature of the liquid phase depends on the Sb/Bi ratio: about 750°C for Sb/Bi < 1 by the eutectic melting in the system ZnO—Bi2O3, and about 1000°C for Sb/Bi > 1 by the reaction of the pyrochlore phase with ZnO. Hence, the densification rate is determined virtually by the Sb/Bi ratio and not by the total amount of additives. The microstructure depends on the sintering temperature. Sintering at 1000°C forms intragrain pyrochlore particles in ZnO grains as well as intergranular layers, but the intragrain particles disappear at 1200°C by the increased amount of liquid phase, which enhances the mobility of the solid second phase.  相似文献   

7.
Current ( I )-voltage ( V ) characteristics of porous ZnO varistors with different Bi2O3 content have been investigated in air as well as in H2-air mixtures in the temperature range room temperature (RT)-600°C. The I-V characteristics measured at RT remained unchanged in the presence of H2, but the breakdown voltage clearly shifted to a lower electric field in the temperature range 400–600°C. The breakdown voltage decreased with increasing H2 concentration in air. The optimum amount of Bi2O3 for the largest decrease was found to be 1.0 mol%. Thus, ZnO varistors can be used as a new type of H2 sensor. The results presented in this study also suggest the important role of excess oxygen ions existing at the ZnO-ZnO grain boundaries in developing the Schottky barrier as well as in the H2-sensing mechanism of the varistors.  相似文献   

8.
In the present study, Pt or AgPd metal is used as the inner electrode for Bi2O3-doped ZnO multilayer varistors (MLV). The growth of the ZnO grains is constrained by the presence of the inner electrodes. The Pt inner electrodes are chemically inert to Bi2O3-doped ZnO. The Bi2O3 could react with Pd to form PdBi2O4. The Bi2O3-rich liquid also tends to wet the AgPd electrode. The size of ZnO grains in the MLV/AgPd specimen is larger. The ZnO grains in the MLV/AgPd specimen can even grow to a size larger than the layer thickness at the expense of electrode continuity.  相似文献   

9.
The Bi2O3-PbO phase diagram was determined using differential thermal analysis and both room- and high-temperature X-ray powder diffraction. The phase diagram contains a single eutectic at 73 mol% PbO and 635°C. A body-centered cubic solid solution exists above ∼600°C within a composition range of 30 to 65 mol% PbO. The compounds α-Bi2O3, σ5-Bi2O3, and γ-PbO (litharge) have wide solubility ranges. Four compounds, 6Bi2O3·PbO, 3Bi2O3·2PbO, 4Bi2O3,5PbO, and Bi2O3·3PbO, are formed in this system and the previously unreported X-ray diffraction patterns of the latter three compounds are reported. Diffraction patterns for some of these mixed oxides have been observed in ZnO-based varistors grown using Bi2O3 and PbO as sintering aids.  相似文献   

10.
The intergranular phase obtained by sintering a binary mixture of ZnO + 0.5 mol% Bi2O3 was isolated by using a dilute solution of HCIO4, which etches ZnO preferentially. The combined results of selected-area electron diffraction and microscopy, microprobe analysis, and X-ray diffraction strongly indicate that the intergranular material is a polycrystalline phase of tetragonal β-Bi2O3 ( P 421 c ), rather than the amorphous ZnO-Bi2O3 phase reported earlier. It appears that the nonohmic behavior in this prototype metal-oxide varistor must be an interfacial property associated with the semiconducting ZnO grains separated by thin layers of high-resistivity Bi2O3.  相似文献   

11.
Densification and microstructure de velopment in Bi2O3-doped ZnO have been studied with a special emphasis on the effect of the Bi2O3 content. A small amount of Bi2O3 in ZnO (0.1 mol%) retarded densification, but the addition of Bi2O3 to more than 0.5 mol% promoted densification by the formation of a liquid phase above the eutectic temperature (∼740°C). The liquid phase increased grain-boundary mobility, which was responsible for the formation of intragrain pores and the decrease in the sintered density. The increase in the Bi2O3 content increased the probability of the formation of skeleton structure, which reduced the grain growth rate and the sintered density.  相似文献   

12.
Grain growth of ZnO during the liquid-phase sintering of binary ZnO–Bi2O3 ceramics has been studied for Bi2O3 contents from 3 to 12 wt% and sintering from 900° to 1400°C. The results are considered in combination with previously published studies of ZnO grain growth in the ZnO–Bi2O3 system. For the Bi2O3 contents of the present study, the rate of ZnO grain growth is found to decrease with increasing Bi2O3. Activation analysis, when combined with the results of similar analyses of the previous studies, reveals a change in the rate-controlling mechanism for ZnO grain growth. Following a low-Bi2O3-content region of nearly constant activation energy values of about 150 kJ/mol, further Bi2O3 additions cause an increase of the activation energy to about 270 kJ/mol. consistent with accepted models of liquid-phase sintering, it is concluded that the rate-controlling mechanism of ZnO grain growth during liquid-phase sintering in the presence of Bi2O3 changes from one of a phase-boundary reaction at low Bi2O3 levels to one of diffusion through the liquid phase at about the 5 to 6 wt% Bi2O3 level and above.  相似文献   

13.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

14.
Origin of ZnO Varistor   总被引:1,自引:0,他引:1  
The varistor properties were examined in porous ZnO. The sample used contained no dopants such as Bi2O3 or Pr6O11, which are usually considered to be useful in developing varistors. Comparison of I-V curves for the oxidized and unoxidized samples indicated that oxygen, which had chemisorbed and diffused into the grain boundary, played a role in developing varistor characteristics.  相似文献   

15.
The effect of annealing on the wetting behavior of Bi-rich intergranular phases in ZnO:Bi:Co varistors was studied. The intergranular phase exhibits temperature-dependent grain-boundary wetting, with an average equilibrium dihedral angle of 0° at 1140°C and over 55° at 610°C. The temperature-dependent wetting may be related to the temperature dependence of the ZnO concentration in the Bi2O3 liquid phase. The effect of the intergranular phase distribation on the electrical properties of ZnO varistors is discussed.  相似文献   

16.
Ceramic varistors based on ZnO with lead zinc borosilicate glass instead of Bi2O3 were prepared. The effect of sintering conditions on the electrical properties was studied by sintering samples at various temperatures and cooling them at different rates. The sample sintered at 1250°C for 1 h, then furnace cooled, possessed the best electrical properties, as characterized by the highest nonlinear coefficient, lowest leakage current, and lowest degradation. The microstructure and crystal structure of the glass phase of ZnO–glass varistors were examined by means of scanning electron microscopy, transmission electron microscopy, and powder X-ray diffractometry. The glass phase was originally amorphous, but crystallized as an intergranular layer in the sintered and furnace-cooled samples. This crystallized phase was a zinc borate phase (5ZnO·2B2O3), which was identified by X-ray diffractometry, transmission electron microscopy, and Auger electron spectroscopy. The zinc borate phase at the grain boundary of ZnO–glass samples enhanced the nonohmic characteristics of the ceramic varistors.  相似文献   

17.
Zinc oxide (ZnO) nanoparticles coated with 1–5 wt% Bi2O3 were prepared by precipitating a Bi(NO3)3 solution onto a ZnO precursor. Transmission electron microscopy showed that a homogeneous Bi2O3 layer coated the surface of the ZnO nanoparticles and that the ZnO particle size was ∼30–50 nm. Scanning electron microscopy showed that ZnO grains sintered at 1150°C were homogeneous in size and surrounded by a uniform Bi2O3 layer. When the ZnO grains were surrounded fully by Bi2O3 liquid phases, further increases in the ZnO grain size were not affected by the Bi2O3 content. This predesigned ZnO nanoparticle structure was shown to promote homogeneous ZnO grains with perfect crystal growth.  相似文献   

18.
The state of Bi at the grain boundaries of ZnO varistors was analyzed using FE-TEM with EDS point and mapping analysis with a spatial resolution of less than 1 nm. The continuous existence of Bi of less than 1/2 atomic layer has been confirmed at ZnO-ZnO junctions without any secondary phase. The coexistence of a crystalline Bi2O3 and an amorphous phase has been found, and a new model has been proposed for the transition of the Bi-O phase from crystalline Bi2O3 to atomic Bi via an amorphous phase with decreasing thickness of grain boundary phases.  相似文献   

19.
Detailed analysis of the microstructure of grain boundaries, especially triple-grain and multiple-grain junctions, in ZnO varistor materials has been performed using transmission electron microscopy. Different polymorphs of Bi2O3 are shown to exhibit different wetting properties on ZnO interfaces. Recent investigations suggest that the equilibrium configuration consists of crystalline Bi2O3 in the triple-grain and multiple-grain junctions and an amorphous bismuth-rich film in the ZnO/ZnO grain boundaries. The present investigation supports this suggestion for δ-Bi2O3 and also adds to the microstructural image and wetting properties of α-Bi2O3.  相似文献   

20.
Pore–boundary separation in ZnO and 99.95ZnO·0.05Bi2O3 (in mol%) specimens during sintering at 1200°C was investigated. In pure ZnO specimens, pores were attached to the grain boundaries and disappeared during the final stage of sintering. In the Bi2O3-doped specimens, on the other hand, many pores were separated from the boundaries and trapped inside the grains. Observation using transmission electron microscopy showed that a thin layer of Bi2O3-rich phase existed at the boundaries in the Bi2O3-doped specimens. The pore separation in 99.95ZnO·0.05Bi2O3 specimens was explained in terms of the dihedral angle change and the high mobility of a liquid film boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号