首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study was to analyse diurnal variations during attention disengagement operations on a neuronal level in a group of subjects representing extreme chronotypes. The parietal lobes of the participants were scanned four times per day for activity changes using functional magnetic resonance imaging (fMRI), while the subjects performed the task at hand. The findings provide credible evidence of the existence of variability in the activity patterns and levels of the parietal lobes. The activity patterns and levels depend on both the participants’ chronotype as well as time of day. The morning type showed stronger activation of the left parietal lobe, while the evening type showed stronger activation of the right parietal lobe. There was a visible decrease in parietal lobe activity during the post-lunch dip, independent of the subjects’ chronotype. Such variability of parietal lobe activity may suggest that humans are more likely to make errors during task performance at certain times of the day as opposed to others.  相似文献   

2.
Time dependent decrements in performance are characteristic of activities that are monotonous and require focused attention for an extended period of time. A vigilance task is a task that participants can perform without difficulty for a short period of time, but with time their performance becomes impaired. A real world example of such a vigilance task is prolonged highway driving. The on-the-road driving test in normal traffic was specifically designed to measure the effects of vigilance decrement associated with driving. The primary parameter of this test is the Standard Deviation of Lateral Position (SDLP), i.e. the weaving of the car. This methodological paper explains the typical vigilance decrement seen in the on-the-road driving test and discusses the importance of sufficient time-on-task to elucidate potential adverse drug effects on driving. Performance decrements (SDLP increment) as a function of time are seen after both drug and placebo treatment, following a similar pattern over distance/time traveled. However, whereas for some drugs SDLP differences between drug and placebo are constant, other drugs produce additional performance decrement that increases over distance traveled. It is concluded that driving tests of short duration (e.g. less than half an hour) may fail to detect drug-related impairment, because participants are capable of, at least in part, counteracting the impairment by increased effort and motivation to perform the test.  相似文献   

3.
Driving is a complex task, which can be broken down into specific cognitive processes. In order to determine which components contribute to drowsy driving impairments, the current study examined simulated driving and neurocognitive performance after one night of sleep deprivation. Nineteen professional drivers (age 45.3 ± 9.1) underwent two experimental sessions in randomised order: one after normal sleep and one after 27 h total sleep deprivation. A simulated driving task (AusEd), the psychomotor vigilance test (PVT), and neurocognitive tasks selected from the Cognitive Drug Research computerised neurocognitive assessment battery (simple and choice RT, Stroop Task, Digit Symbol Substitution Task, and Digit Vigilance Task) were administered at 10:00 h in both sessions. Mixed-effects ANOVAs were performed to examine the effect of sleep deprivation versus normal sleep on performance measures. To determine if any neurocognitive tests predicted driving performance (lane position variability, speed variability, braking RT), neurocognitive measures that were significantly affected by sleep deprivation were then added as a covariate to the ANOVAs for driving performance. Simulated driving performance and neurocognitive measures of vigilance and reaction time were impaired after sleep deprivation (p < 0.05), whereas tasks examining processing speed and executive functioning were not significantly affected by sleep loss. PVT performance significantly predicted specific aspects of simulated driving performance. Thus, psychomotor vigilance impairment may be a key cognitive component of driving impairment when sleep deprived. The generalisability of this finding to real-world driving remains to be investigated.  相似文献   

4.
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver's hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony - namely road design and road side variability - decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver's decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver's sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.  相似文献   

5.
Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver’s hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony – namely road design and road side variability – decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver’s decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver’s sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.  相似文献   

6.
Driver fatigue remains a significant cause of motor-vehicle accidents worldwide. New technologies are increasingly utilised to improve road safety, but there are no effective on-road measures for fatigue. While simulated driving tasks are sensitive, and simple performance tasks have been used in industrial fatigue management systems (FMS) to quantify risk, little is known about the relationship between such measures. Establishing a simple, on-road measure of fatigue, as a fitness-to-drive tool, is an important issue for road safety and accident prevention, particularly as many fatigue related accidents are preventable. This study aimed to measure fatigue-related performance decrements using a simple task (reaction time - RT) and a complex task (driving simulation), and to determine the potential for a link between such measures, thus improving FMS success. Fifteen volunteer participants (7 m, 8 f) aged 22-56 years (mean 33.6 years), underwent 26 h of supervised wakefulness before an 8h recovery sleep opportunity. Participants were tested using a 30-min interactive driving simulation test, bracketed by a 10-min psychomotor vigilance task (PVT) at 4, 8, 18 and 24h of wakefulness, and following recovery sleep. Extended wakefulness caused significant decrements in PVT and driving performance. Although these measures are clearly linked, our analyses suggest that driving simulation cannot be replaced by a simple PVT. Further research is needed to closely examine links between performance measures, and to facilitate accurate management of fitness to drive, which requires more complex assessments of performance than RT alone.  相似文献   

7.
Young adults with attention deficit hyperactivity disorder (ADHD) are at higher risk for being involved in automobile crashes. Although driving simulators have been used to identify and understand underlying behaviors, prior research has focused largely on single-task, non-distracted driving. However, in-vehicle infotainment and communications systems often vie for a driver's attention, potentially increasing the risk of collision. This paper explores the impact of secondary tasks on individuals with and without ADHD, a medical condition known to affect the regulation of attention. Data are drawn from a validated driving simulation representing periods before, during, and after participation in a secondary cognitive task. A hands-free phone task was employed in a high stimulus, urban setting and a working memory task during low stimulus, highway driving. Drivers with ADHD had more difficulty on the telephone task, yet did not show an increased decrement in driving performance greater than control participants. In contrast, participants with ADHD showed a larger decline in driving performance than controls during a secondary task in a low demand setting. The results suggest that the interaction of the nature of the driving context and the secondary task has a significant influence on how drivers with ADHD allocate attention and, in-turn, on the relative impact on driving performance. Drivers with ADHD appear particularly susceptible to distraction during periods of low stimulus driving.  相似文献   

8.
To investigate the effects of monotonous daytime driving on vigilance state and particularly the ability to judge this state, a real road driving study was conducted. To objectively assess vigilance state, performance (auditory reaction time) and physiological measures (EEG: alpha spindle rate, P3 amplitude; ECG: heart rate) were recorded continuously. Drivers judged sleepiness, attention to the driving task and monotony retrospectively every 20 min. Results showed that prolonged daytime driving under monotonous conditions leads to a continuous reduction in vigilance. Towards the end of the drive, drivers reported a subjectively improved vigilance state, which was contrary to the continued decrease in vigilance as indicated by all performance and physiological measures. These findings indicate a lack of self-assessment abilities after approximately 3 h of continuous monotonous daytime driving.  相似文献   

9.
Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.  相似文献   

10.
On 27 August 2006 at 0606 eastern daylight time (EDT) at Bluegrass Airport in Lexington, KY (LEX), the flight crew of Comair Flight 5191 inadvertently attempted to take off from a general aviation runway too short for their aircraft. The aircraft crashed killing 49 of the 50 people on board. To better understand this accident and to aid in preventing similar accidents, we applied mathematical modeling predicting fatigue-related degradation in performance for the Air Traffic Controller on-duty at the time of the crash. To provide the necessary input to the model, we attempted to estimate circadian phase and sleep/wake histories for the Captain, First Officer, and Air Traffic Controller. We were able to estimate with confidence the circadian phase for each. We were able to estimate with confidence the sleep/wake history for the Air Traffic Controller, but unable to do this for the Captain and First Officer. Using the sleep/wake history estimates for the Air Traffic Controller as input, the mathematical modeling predicted moderate fatigue-related performance degradation at the time of the crash. This prediction was supported by the presence of what appeared to be fatigue-related behaviors in the Air Traffic Controller during the 30 min prior to and in the minutes after the crash. Our modeling results do not definitively establish fatigue in the Air Traffic Controller as a cause of the accident, rather they suggest that had he been less fatigued he might have detected Comair Flight 5191's lining up on the wrong runway. We were not able to perform a similar analysis for the Captain and First Officer because we were not able to estimate with confidence their sleep/wake histories. Our estimates of sleep/wake history and circadian rhythm phase for the Air Traffic Controller might generalize to other air traffic controllers and to flight crew operating in the early morning hours at LEX. Relative to other times of day, the modeling results suggest an elevated risk of fatigue-related error, incident, or accident in the early morning due to truncated sleep from the early start and adverse circadian phase from the time of day. This in turn suggests that fatigue mitigation targeted to early morning starts might reduce fatigue risk. In summary, this study suggests that mathematical models predicting performance from sleep/wake history and circadian phase are (1) useful in retrospective accident analysis provided reliable sleep/wake histories are available for the accident personnel and, (2) useful in prospective fatigue-risk identification, mitigation, and accident prevention.  相似文献   

11.
The current study examined the effects of cognitively distracting tasks on various measures of driving performance. Thirty-six college students with a median of 6 years of driving experience completed a driving history questionnaire and four simulated driving scenarios. The distraction tasks consisted of responding to a signal detection task and engaging in a simulated cell phone conversation. Driving performance was measured in terms of four categories of behavior: traffic violations (e.g., speeding, running stop signs), driving maintenance (e.g., standard deviation of lane position), attention lapses (e.g., stops at green lights, failure to visually scan for intersection traffic), and response time (e.g., time to step on brake in response to a pop-up event). Performance was significantly impacted in all four categories when drivers were concurrently talking on a hands-free phone. Performance on the signal detection task was poor and not significantly impacted by the phone task, suggesting that considerably less attention was paid to detecting these peripheral signals. However, the signal detection task did interact with the phone task on measures of average speed, speed variability, attention lapses, and reaction time. The findings lend further empirical support of the dangers of drivers being distracted by cell phone conversations.  相似文献   

12.
Crash causation research has identified inattention as a major source of driver error leading to crashes. The series of experiments presented herein investigate the characteristics of an in-vehicle information system (IVIS) task that could hinder driving performance due to uncertainty buildup and cognitive capture. Three on-road studies were performed that used instrumented passenger and tractor-trailer vehicles to obtain real-world driving performance data. Participants included young, middle-aged, and older passenger vehicle drivers and middle-aged and older commercial vehicle operators. While driving, they were presented with IVIS tasks with various information densities, decision-making elements, presentation formats, and presentation modalities (visual or auditory). The experiments showed that, for both presentation modalities, the presence of multiple decision-making elements in a task had a substantial negative impact on driving performance of both automobile drivers and truck drivers when compared to conventional tasks or tasks with only one decision-making element. The results from these experiments can be used to improve IVIS designs, allowing for potential IVIS task phenomena such as uncertainty buildup and cognitive capture to be avoided.  相似文献   

13.
Prolonged driving under monotonous conditions decreases the vigilance of the human controller and his performance of the driving task. Variations of his control activity (vehicle related signals) were measured with the goal of receiving criteria for a warning device, which could improve the active safety of today's traffic. The investigations were performed on a rural circuit and on a driving simulator: the control variable for decreasing vigilance was the electro-encephalogram of the test subjects. Factor analysis and canonical correlation were used to investigate the relation between both data sets. The EEG parameters showed a frontal displacement under prolonged driving: thus a decreasing vigilance could be confirmed. Simultaneously the subjects' control activity in the tracking task became coarser. The accelerator pedal activity—which is a relatively free control variable—decreased with the test duration despite constant driving speed. This was explained with increased risk-acceptance at decreased performance or decreased vigilance.  相似文献   

14.
Efficient driver drowsiness detection at moderate levels of drowsiness   总被引:1,自引:0,他引:1  
Previous research on driver drowsiness detection has focused primarily on lane deviation metrics and high levels of fatigue. The present research sought to develop a method for detecting driver drowsiness at more moderate levels of fatigue, well before accident risk is imminent. Eighty-seven different driver drowsiness detection metrics proposed in the literature were evaluated in two simulated shift work studies with high-fidelity simulator driving in a controlled laboratory environment. Twenty-nine participants were subjected to a night shift condition, which resulted in moderate levels of fatigue; 12 participants were in a day shift condition, which served as control. Ten simulated work days in the study design each included four 30-min driving sessions, during which participants drove a standardized scenario of rural highways. Ten straight and uneventful road segments in each driving session were designated to extract the 87 different driving metrics being evaluated. The dimensionality of the overall data set across all participants, all driving sessions and all road segments was reduced with principal component analysis, which revealed that there were two dominant dimensions: measures of steering wheel variability and measures of lateral lane position variability. The latter correlated most with an independent measure of fatigue, namely performance on a psychomotor vigilance test administered prior to each drive. We replicated our findings across eight curved road segments used for validation in each driving session. Furthermore, we showed that lateral lane position variability could be derived from measured changes in steering wheel angle through a transfer function, reflecting how steering wheel movements change vehicle heading in accordance with the forces acting on the vehicle and the road. This is important given that traditional video-based lane tracking technology is prone to data loss when lane markers are missing, when weather conditions are bad, or in darkness. Our research findings indicated that steering wheel variability provides a basis for developing a cost-effective and easy-to-install alternative technology for in-vehicle driver drowsiness detection at moderate levels of fatigue.  相似文献   

15.
Research indicates that using a cell phone to talk or text while maneuvering a vehicle impairs driving performance. However, few published studies directly compare the distracting effects of texting using a hands-free (i.e., speech-based interface) versus handheld cell phone, which is an important issue for legislation, automotive interface design and driving safety training. This study compared the effect of speech-based versus handheld text entries on simulated driving performance by asking participants to perform a car following task while controlling the duration of a secondary text-entry task. Results showed that both speech-based and handheld text entries impaired driving performance relative to the drive-only condition by causing more variation in speed and lane position. Handheld text entry also increased the brake response time and increased variation in headway distance. Text entry using a speech-based cell phone was less detrimental to driving performance than handheld text entry. Nevertheless, the speech-based text entry task still significantly impaired driving compared to the drive-only condition. These results suggest that speech-based text entry disrupts driving, but reduces the level of performance interference compared to text entry with a handheld device. In addition, the difference in the distraction effect caused by speech-based and handheld text entry is not simply due to the difference in task duration.  相似文献   

16.
Ecstasy (MDMA) use raises concerns because of its association with risky driving. We evaluated driving performance and risk taking in abstinent recreational MDMA users in a simulated car following task that required continuous attention and vigilance. Drivers were asked to follow two car lengths behind a lead vehicle (LV). Three sinusoids generated unpredictable LV velocity changes. Drivers could mitigate risk by following further behind the erratic LV. From vehicle trajectory data we performed a Fourier analysis to derive measures of coherence, gain, and delay. These measures and headway distance were compared between the different groups. All MDMA drivers met coherence criteria indicating cooperation in the car following task. They matched periodic changes in LV velocity similar to controls (abstinent THC users, abstinent alcohol users, and non-drug users), militating against worse vigilance. While all participants traveled approximately 55 mph (89 kph), the MDMA drivers followed 64 m closer to the LV and demonstrated 1.04 s shorter delays to LV velocity changes than other driver groups. The simulated car following task safely discriminated between driving behavior in abstinent MDMA users and controls. Abstinent MDMA users do not perform worse than controls, but may assume extra risk. The control theory framework used in this study revealed behaviors that might not otherwise be evident.  相似文献   

17.
A series of closed-course driving experiments were conducted in which 41 drivers ranging in age from 19 to 70 were put through a series of increasingly challenging driving performance tasks both in the presence and absence of audible messages. The messages required specific responses and these, along with driving performance measures based on driver/vehicle response characteristics, were recorded. The results clearly showed a negative impact of the message task on driver decision-making performance when this involved the more complex tasks of weaving and especially left-turning. Such decision-making decrements in the presence of the messages were exacerbated by adverse pavement surface conditions.  相似文献   

18.
This study aimed to investigate how singing while driving affects driver performance. Twenty-one participants completed three trials of a simulated drive concurrently while performing a peripheral detection task (PDT); each trial was conducted either without music, with participants listening to music, or with participants singing along to music. It was hypothesised that driving performance and PDT response times would be impaired, and that driver subjective workload ratings would be higher, when participants were singing to music compared to when there was no music or when participants were listening to music. As expected, singing while driving was rated as more mentally demanding, and resulted in slower and more variable speeds, than driving without music. Listening to music was associated with the slowest speeds overall, and fewer lane excursions than the no music condition. Interestingly, both music conditions were associated with slower speed-adjusted PDT response times and significantly less deviation within the lane than was driving without music. Collectively, results suggest that singing while driving alters driving performance and impairs hazard perception while at the same time increasing subjective mental workload. However, singing while driving does not appear to affect driving performance more than simply listening to music. Further, drivers’ efforts to compensate for the increased mental workload associated with singing and listening to music by slowing down appear to be insufficient, as evidenced by relative increases in PDT response times in these two conditions compared to baseline.  相似文献   

19.
The effects of 28 h of sleep deprivation were compared with varying doses of alcohol up to 0.1% blood alcohol concentration (BAC) in the same subjects. The study was conducted in the laboratory. Twenty long-haul truck drivers and 19 people not employed as professional drivers acted as subjects. Tests were selected that were likely to be affected by fatigue, including simple reaction time, unstable tracking, dual task, Mackworth clock vigilance test, symbol digit coding, visual search, sequential spatial memory and logical reasoning. While performance effects were seen due to alcohol for all tests, sleep deprivation affected performance on most tests, but had no effect on performance on the visual search and logical reasoning tests. Some tests showed evidence of a circadian rhythm effect on performance, in particular, simple reaction time, dual task, Mackworth clock vigilance, and symbol digit coding, but only for response speed and not response accuracy. Drivers were slower but more accurate than controls on the symbol digit test, suggesting that they took a more conservative approach to performance of this test. This study demonstrated which tests are most sensitive to sleep deprivation and fatigue. The study therefore has established a set of tests that can be used in evaluations of fatigue and fatigue countermeasures.  相似文献   

20.
Given the proliferation of in-vehicle technologies, techniques must be developed to ensure devices do not produce unacceptable levels of distraction. One approach is to use static time on task (e.g., the 15-second rule). However, this practice makes three critical assumptions: (1) static time on task predicts time on task while driving; (2) time on task measured in a hazard-free environment predicts time on task when drivers expect hazards; (3) time on task predicts perceived distraction, collisions, and driving errors. To test these assumptions, two tasks were compared in 32 drivers using a driving simulator. The tasks were manipulating controls of a radio/tape deck and dialling a hand-held cellular phone. Static time on task underestimated dynamic time on task, though the differences between tasks were roughly consistent across testing conditions, with the cellular task taking more time. Participants who expected hazards required slightly more time on task than those who did not, but the effect was only marginal (p=0.09) and consistent across tasks. Finally, the device with higher static time on task also produced significantly more lane deviations and perceived interference, though the predicted pattern of results did not emerge for collisions and hazard response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号