共查询到20条相似文献,搜索用时 6 毫秒
1.
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance. 相似文献
2.
Farm vehicle crashes are a major safety concern for farmers as well as all other users of the public road system in agricultural states. Using data on farm vehicle crashes that occurred on Iowa's public roads between 2004 and 2006, we estimate a multinomial logit model to identify crash-, farm vehicle-, and driver-specific factors that determine farm vehicle crash injury severity outcomes. Estimation findings indicate that there are crash patterns (rear-end manner of collision; single-vehicle crash; farm vehicle crossed the centerline or median) and conditions (obstructed vision and crash in rural area; dry road, dark lighting, speed limit 55 mph or higher, and harvesting season), as well as farm vehicle and driver-contributing characteristics (old farm vehicle, young farm vehicle driver), where targeted intervention can help reduce the severity of crash outcomes. Determining these contributing factors and their effect is the first step to identifying countermeasures and safety strategies in a bid to improve transportation safety for all users on the public road system in Iowa as well as other agricultural states. 相似文献
3.
Standard multinomial logit (MNL) and mixed logit (MXL) models are developed to estimate the degree of influence that bicyclist, driver, motor vehicle, geometric, environmental, and crash type characteristics have on bicyclist injury severity, classified as property damage only, possible, nonincapacitating or severe (i.e., incapacitating or fatal) injury. This study is based on 10,029 bicycleinvolved crashes that occurred in the State of Ohio from 2002 to 2008. Results of likelihood ratio tests reveal that some of the factors affecting bicyclist injury severity at intersection and non-intersection locations are substantively different and using a common model to jointly estimate impacts on severity at both types of locations may result in biased or inconsistent estimates. Consequently, separate models are developed to independently assess the impacts of various factors on the degree of bicyclist injury severity resulting from crashes at intersection and non-intersection locations.Several covariates are found to have similar impacts on injury severity at both intersection and non-intersection locations. Conversely, six variables were found to significantly influence injury severity at intersection locations but not non-intersection locations while four variables influenced bicyclist injury severity only at non-intersection locations. In crashes occurring at intersection locations, the likelihood of severe bicyclist injury increases by 14.8 percent if the bicyclist is not wearing a helmet, 82.2 percent if the motorist is under the influence of alcohol, 141.3 percent if the crash-involved motor vehicle is a van, 40.6 percent if the motor vehicle strikes the side of the bicycle, and 182.6 percent if the crash occurs on a horizontal curve with a grade. Results from non-intersection locations show the likelihood of severe injuries increases by 374.5 percent if the bicyclist is under the influence of drugs, 150.1 percent if the motorist is under the influence of alcohol, 53.5 percent if the motor vehicle strikes the side of the bicycle and 99.9 percent if the crash-involved motor vehicle is a heavy-duty truck. 相似文献
4.
Using motorcycle crash data for Iowa from 2001 to 2008, this paper estimates a mixed logit model to investigate the factors that affect crash severity outcomes in a collision between a motorcycle and another vehicle. These include crash-specific factors (such as manner of collision, motorcycle rider and non-motorcycle driver and vehicle actions), roadway and environmental conditions, location and time, motorcycle rider and non-motorcycle driver and vehicle attributes. The methodological approach allows the parameters to vary across observations as opposed to a single parameter representing all observations. Our results showed non-uniform effects of rear-end collisions on minor injury crashes, as well as of the roadway speed limit greater or equal to 55 mph, the type of area (urban), the riding season (summer) and motorcyclist's gender on low severity crashes. We also found significant effects of the roadway surface condition, clear vision (not obscured by moving vehicles, trees, buildings, or other), light conditions, speed limit, and helmet use on severe injury outcomes. 相似文献
5.
Rural roads carry less than fifty percent of the traffic in the United States. However, more than half of the traffic accident fatalities occurred on rural roads. This research focuses on analyzing injury severities involving single-vehicle crashes on rural roads, utilizing a latent class logit (LCL) model. Similar to multinomial logit (MNL) models, the LCL model has the advantage of not restricting the coefficients of each explanatory variable in different severity functions to be the same, making it possible to identify the impacts of the same explanatory variable on different injury outcomes. In addition, its unique model structure allows the LCL model to better address issues pertinent to the independence from irrelevant alternatives (IIA) property. A MNL model is also included as the benchmark simply because of its popularity in injury severity modeling. The model fitting results of the MNL and LCL models are presented and discussed. Key injury severity impact factors are identified for rural single-vehicle crashes. Also, a comparison of the model fitting, analysis marginal effects, and prediction performance of the MNL and LCL models are conducted, suggesting that the LCL model may be another viable modeling alternative for crash-severity analysis. 相似文献
6.
The severity of injury from vehicle crash is a result of a complex interaction of factors related to drivers’ behavior, vehicle characteristics, road geometric and environmental conditions. Knowing to what extent each factor contributes to the severity of an injury is very important. The objective of the study was to assess factors that contribute to crash injury severity in Ethiopia. Data was collected from June 2012 to July 2013 on one of the main and busiest highway of Ethiopia, which extends from the capital Addis Ababa to Hawassa. During the study period a total of 819 road crashes was recorded and investigated by trained crash detectors. A generalized ordered logit/partial proportional odds model was used to examine factors that might influence the severity of crash injury. Model estimation result suggested that, alcohol use (Coef. = 0.5565; p-value = 0.017), falling asleep while driving (Coef. = 1.3102; p-value = 0.000), driving at night time in the absence of street light (Coef. = 0.3920; p-value = 0.033), rainfall (Coef. = 0.9164; p-value = 0.000) and being a minibus or vans (Coef. = 0.5065; p-value = 0.013) were found to be increased crash injury severity. On the other hand, speeding was identified to have varying coefficients for different injury levels, its highest effects on sever and fatal crashes. In this study risky driving behaviors (speeding, alcohol use and sleep/fatigue) were a powerful predictor of crash injury severity. Therefore, better driver licensing and road safety awareness campaign complimented with strict police enforcement can play a pivotal role to improve road safety. Further effort needed as well to monitor speed control strategies like; using the radar control and physical speed restraint measures (i.e., rumble strips). 相似文献
7.
This study explores the differences between urban and rural driver injuries (both passenger-vehicle and large-truck driver injuries) in accidents that involve large trucks (in excess of 10,000 pounds). Using 4 years of California accident data, and considering four driver-injury severity categories (no injury, complaint of pain, visible injury, and severe/fatal injury), a multinomial logit analysis of the data was conducted. Significant differences with respect to various risk factors including driver, vehicle, environmental, road geometry and traffic characteristics were found to exist between urban and rural models. For example, in rural accidents involving tractor-trailer combinations, the probability of drivers' injuries being severe/fatal increased about 26% relative to accidents involving single-unit trucks. In urban areas, this same probability increased nearly 700%. In accidents where alcohol or drug use was identified as being the primary cause of the accident, the probability of severe/fatal injury increased roughly 250% percent in rural areas and nearly 800% in urban areas. While many of the same variables were found to be significant in both rural and urban models (although often with quite different impact), there were 13 variables that significantly influenced driver-injury severity in rural but not urban areas, and 17 variables that significantly influenced driver-injury severity in urban but not rural areas. We speculate that the significant differences between rural and urban injury severities may be at least partially attributable to the different perceptual, cognitive and response demands placed on drivers in rural versus urban areas. 相似文献
8.
Many transportation agencies use accident frequencies, and statistical models of accidents frequencies, as a basis for prioritizing highway safety improvements. However, the use of accident severities in safety programming has been often been limited to the locational assessment of accident fatalities, with little or no emphasis being placed on the full severity distribution of accidents (property damage only, possible injury, injury)-which is needed to fully assess the benefits of competing safety-improvement projects. In this paper we demonstrate a modeling approach that can be used to better understand the injury-severity distributions of accidents on highway segments, and the effect that traffic, highway and weather characteristics have on these distributions. The approach we use allows for the possibility that estimated model parameters can vary randomly across roadway segments to account for unobserved effects potentially relating to roadway characteristics, environmental factors, and driver behavior. Using highway-injury data from Washington State, a mixed (random parameters) logit model is estimated. Estimation findings indicate that volume-related variables such as average daily traffic per lane, average daily truck traffic, truck percentage, interchanges per mile and weather effects such as snowfall are best modeled as random-parameters-while roadway characteristics such as the number of horizontal curves, number of grade breaks per mile and pavement friction are best modeled as fixed parameters. Our results show that the mixed logit model has considerable promise as a methodological tool in highway safety programming. 相似文献
9.
This research explores differences in injury severity between male and female drivers in single and two-vehicle accidents involving passenger cars, pickups, sport-utility vehicles (SUVs), and minivans. Separate multivariate multinomial logit models of injury severity are estimated for male and female drivers. The models predict the probability of four injury severity outcomes: no injury (property damage only), possible injury, evident injury, and fatal/disabling injury. The models are conditioned on driver gender and the number and type of vehicles involved in the accident. The conditional structure avoids bias caused by men and women's different reporting rates, choices of vehicle type, and their different rates of participation as drivers, which would affect a joint model of all crashes. We found variables that have opposite effects for the genders, such as striking a barrier or a guardrail, and crashing while starting a vehicle. The results suggest there are important behavioral and physiological differences between male and female drivers that must be explored further and addressed in vehicle and roadway design. 相似文献
10.
Given the importance of trucking to the economic well being of a country and the safety concerns posed by the trucks, a study of large-truck crashes is critical. This paper contributes by undertaking an extensive analysis of the empirical factors affecting injury severity of large-truck crashes. Data from a recent, nationally representative sample of large-truck crashes are examined to determine the factors affecting the overall injury severity of these crashes. The explanatory factors include the characteristics of the crash, vehicle(s), and the driver(s). The injury severity was modeled using two measures. Several similarities and some differences were observed across the two models which underscore the need for improved accuracy in the assessment of injury severity of crashes. The estimated models capture the marginal effects of a variety of explanatory factors simultaneously. In particular, the models indicate the impacts of several driver behavior variables on the severity of the crashes, after controlling for a variety of other factors. For example, driver distraction (truck drivers), alcohol use (car drivers), and emotional factors (car drivers) are found to be associated with higher severity crashes. A further interesting finding is the strong statistical significance of several dummy variables that indicate missing data – these reflect how the nature of the crash itself could affect the completeness of the data. Future efforts should seek to collect such data more comprehensively so that the true effects of these aspects on the crash severity can be determined. 相似文献
11.
Crashes occurring on rural two-lane highways are more likely to result in severe driver incapacitating injuries and fatalities. In this study, mixed logit models are developed to analyze driver injury severities in single-vehicle (SV) and multi-vehicle (MV) crashes on rural two-lane highways in New Mexico from 2010 to 2011. A series of significant contributing factors in terms of driver behavior, weather conditions, environmental characteristics, roadway geometric features and traffic compositions, are identified and their impacts on injury severities are quantified for these two types of crashes, respectively. Elasticity analyses and transferability tests were conducted to better understand the models’ specification and generality. The research findings indicate that there are significant differences in causal attributes determining driver injury severities between SV and MV crashes. For example, more severe driver injuries and fatalities can be observed in MV crashes when motorcycles or trucks are involved. Dark lighting conditions and dusty weather conditions are found to significantly increase MV crash injury severities. However, SV crashes demonstrate different characteristics influencing driver injury severities. For example, the probability of having severe injury outcomes is higher when vans are identified in SV crashes. Drivers’ overtaking actions will significantly increase SV crash injury severities. Although some common attributes, such as alcohol impaired driving, are significant in both SV and MV crash severity models, their effects on different injury outcomes vary substantially. This study provides a better understanding of similarities and differences in significant contributing factors and their impacts on driver injury severities between SV and MV crashes on rural two-lane highways. It is also helpful to develop cost-effective solutions or appropriate injury prevention strategies for rural SV and MV crashes. 相似文献
12.
A bivariate ordered-response probit model of driver's and most severely injured passenger's severity (IS) in collisions with fixed objects is developed in this study. Exact passenger's IS is not necessarily observed, especially when only most severe injury of the accident and driver's injury are recorded in the police reports. To accommodate passenger IS as well, we explicitly develop a partial observability model of passenger IS in multi-occupant vehicle (HOV). The model has consistent coefficients for the driver IS between single-occupant vehicle (SOV) and multiple-occupant vehicle accidents, and provides more efficient coefficient estimates by taking into account the common unobserved factors between driver and passenger IS. The results of the empirical analysis using 4-year statewide accident data in Washington State reveal the effects of driver's characteristics, vehicle attributes, types of objects, and environmental conditions on both driver and passenger IS, and that their IS have different elasticities to some of the risk factors. 相似文献
13.
Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention. 相似文献
14.
In adverse driving conditions, such as inclement weather and/or complex terrain, trucks are often involved in single-vehicle (SV) accidents in addition to multi-vehicle (MV) accidents. Ten-year accident data involving trucks on rural highway from the Highway Safety Information System (HSIS) is studied to investigate the difference in driver-injury severity between SV and MV accidents by using mixed logit models. Injury severity from SV and MV accidents involving trucks on rural highways is modeled separately and their respective critical risk factors such as driver, vehicle, temporal, roadway, environmental and accident characteristics are evaluated. It is found that there exists substantial difference between the impacts from a variety of variables on the driver-injury severity in MV and SV accidents. By conducting the injury severity study for MV and SV accidents involving trucks separately, some new or more comprehensive observations, which have not been covered in the existing studies can be made. Estimation findings indicate that the snow road surface and light traffic indicators will be better modeled as random parameters in SV and MV models respectively. As a result, the complex interactions of various variables and the nature of truck-driver injury are able to be disclosed in a better way. Based on the improved understanding on the injury severity of truck drivers from truck-involved accidents, it is expected that more rational and effective injury prevention strategy may be developed for truck drivers under different driving conditions in the future. 相似文献
15.
Work zones are critical parts of the transportation infrastructure renewal process consisting of rehabilitation of roadways, maintenance, and utility work. Given the specific nature of a work zone (complex arrangements of traffic control devices and signs, narrow lanes, duration) a number of crashes occur with varying severities involving different vehicle sizes. In this paper we attempt to investigate the causal factors contributing to injury severity of large truck crashes in work zones. Considering the discrete nature of injury severity categories, a number of comparable econometric models were developed including multinomial logit (MNL), nested logit (NL), ordered logit (ORL), and generalized ordered logit (GORL) models. The MNL and NL models belong to the class of unordered discrete choice models and do not recognize the intrinsic ordinal nature of the injury severity data. The ORL and GORL models, on the other hand, belong to the ordered response framework that was specifically developed for handling ordinal dependent variables. Past literature did not find conclusive evidence in support of either framework. This study compared these alternate modeling frameworks for analyzing injury severity of crashes involving large trucks in work zones. The model estimation was undertaken by compiling a database of crashes that (1) involved large trucks and (2) occurred in work zones in the past 10 years in Minnesota. Empirical findings indicate that the GORL model provided superior data fit as compared to all the other models. Also, elasticity analysis was undertaken to quantify the magnitude of impact of different factors on work zone safety and the results of this analysis suggest the factors that increase the risk propensity of sustaining severe crashes in a work zone include crashes in the daytime, no control of access, higher speed limits, and crashes occurring on rural principal arterials. 相似文献
16.
In this study, a mixed logit model is developed to identify the heterogeneous impacts of gender-interpreted contributing factors on driver injury severities in single-vehicle rollover crashes. The random parameter of the variables in the mixed logit model, the heterogeneous mean, is elaborated by driver gender-based linear regression models. The model is estimated using crash data in New Mexico from 2010 to 2012. The percentage changes of factors’ predicted probabilities are calculated in order to better understand the model specifications. Female drivers are found more likely to experience severe or fatal injuries in rollover crashes than male drivers. However, the probability of male drivers being severely injured is higher than female drivers when the road surface is unpaved. Two other factors with fixed parameters are also found to significantly increase driver injury severities, including Wet and Alcohol Influenced. This study provides a better understanding of contributing factors influencing driver injury severities in rollover crashes as well as their heterogeneous impacts in terms of driver gender. Those results are also helpful to develop appropriate countermeasures and policies to reduce driver injury severities in single-vehicle rollover crashes. 相似文献
17.
This study identifies and compares the significant factors affecting pedestrian crash injury severity at signalized and unsignalized intersections. The factors explored include geometric predictors (e.g., presence and type of crosswalk and presence of pedestrian refuge area), traffic predictors (e.g., annual average daily traffic (AADT), speed limit, and percentage of trucks), road user variables (e.g., pedestrian age and pedestrian maneuver before crash), environmental predictors (e.g., weather and lighting conditions), and vehicle-related predictors (e.g., vehicle type). The analysis was conducted using the mixed logit model, which allows the parameter estimates to randomly vary across the observations. The study used three years of pedestrian crash data from Florida. Police reports were reviewed in detail to have a better understanding of how each pedestrian crash occurred. Additionally, information that is unavailable in the crash records, such as at-fault road user and pedestrian maneuver, was collected. At signalized intersections, higher AADT, speed limit, and percentage of trucks; very old pedestrians; at-fault pedestrians; rainy weather; and dark lighting condition were associated with higher pedestrian severity risk. For example, a one-percent higher truck percentage increases the probability of severe injuries by 1.37%. A one-mile-per-hour higher speed limit increases the probability of severe injuries by 1.22%. At unsignalized intersections, pedestrian walking along roadway, middle and very old pedestrians, at-fault pedestrians, vans, dark lighting condition, and higher speed limit were associated with higher pedestrian severity risk. On the other hand, standard crosswalks were associated with 1.36% reduction in pedestrian severe injuries. Several countermeasures to reduce pedestrian injury severity are recommended. 相似文献
18.
This paper proposes an econometric structure for injury severity analysis at the level of individual accidents that recognizes the ordinal nature of the categories in which injury severity are recorded, while also allowing flexibility in capturing the effects of explanatory variables on each ordinal category and allowing heterogeneity in the effects of contributing factors due to the moderating influence of unobserved factors. The model developed here, referred to as the mixed generalized ordered response logit (MGORL) model, generalizes the standard ordered response models used in the extant literature for injury severity analysis. To our knowledge, this is the first such formulation to be proposed and applied in the econometric literature in general, and in the safety analysis literature in particular. The MGORL model is applied to examine non-motorist injury severity in accidents in the USA, using the 2004 General Estimates System (GES) database. The empirical findings emphasize the inconsistent results obtained from the standard ordered response model. An important policy result from our analysis is that the general pattern and relative magnitude of elasticity effects of injury severity determinants are similar for pedestrians and bicyclists. The analysis also suggests that the most important variables influencing non-motorist injury severity are the age of the individual (the elderly are more injury-prone), the speed limit on the roadway (higher speed limits lead to higher injury severity levels), location of crashes (those at signalized intersections are less severe than those elsewhere), and time-of-day (darker periods lead to higher injury severity). 相似文献
19.
There is no consensus on whether the risk of road traffic injury is higher among men or among women. Comparison between studies is difficult mainly due to the different exposure measures used to estimate the risk. The measures of exposure to the risk of road traffic injury should be people's mobility measures, but frequently authors use other measures such population or vehicles mobility. We compare road traffic injury risk in men and women, by age, mode of transport and severity, using the time people spend travelling as the exposure measure, in Catalonia for the period 2004–2008. This is a cross-sectional study including all residents aged over 3 years. The road traffic injury rate was calculated using the number of people injured, from the Register of Accidents and Victims of the National Traffic Authority as numerator, and the person-hours travelled, from the 2006 Daily Mobility Survey carried out by the Catalan regional government, as denominator. Sex and age specific rates by mode of transport and severity were calculated, and Poisson regression models were fitted. Among child pedestrians and young drivers, males present higher risk of slight and severe injury, and in the oldest groups women present higher risk. The death rate is always higher in men. There exists interaction between sex and age in road traffic injury risk. Therefore, injury risk is higher among men in some age groups, and among women in other groups, but these age groups vary depending on mode of transport and severity. 相似文献
20.
This study involves an examination of driver behavior at the onset of a yellow signal indication. Behavioral data were obtained from a driving simulator study that was conducted through the National Advanced Driving Simulator (NADS) laboratory at the University of Iowa. These data were drawn from a series of events during which study participants drove through a series of intersections where the traffic signals changed from the green to yellow phase. The resulting dataset provides potential insights into how driver behavior is affected by distracted driving through an experimental design that alternated handheld, headset, and hands-free cell phone use with “normal” baseline driving events. The results of the study show that male drivers ages 18–45 were more likely to stop. Participants were also more likely to stop as they became more familiar with the simulator environment. Cell phone use was found to some influence on driver behavior in this setting, though the effects varied significantly across individuals. The study also demonstrates two methodological approaches for dealing with unobserved heterogeneity across drivers. These include random parameters and latent class logit models, each of which analyze the data as a panel. The results show each method to provide significantly better fit than a pooled, fixed parameter model. Differences in terms of the context of these two approaches are discussed, providing important insights as to the differences between these modeling frameworks. 相似文献
|