首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
来育梅  程茹  章刚  王伟  黄培 《塑料工业》2006,34(6):40-42,45
在380℃下熔融挤出制得聚醚醚酮(PEEK)与聚醚酰亚胺(PEI)共混物。采用差示扫描量热仪(DSC)和广角X射线衍射仪(WAXD)研究了共混物的相容性和结晶行为。结果表明,PEEK/PEI共混物完全相容.所有共混物均呈现一个玻璃化转变温度(Tg),且与组分的关系符合Porch方程;随PEI含量的增加,共混体系的熔点、结晶度、整体结晶速率和结晶能力均降低:而PEEK的结晶度呈现先增加后减小的趋势,当PEI质量分数为50%时,达到最大。  相似文献   

2.
将H型多功能纳米碳酸钙母料(HMFNC-MB)与PET热机械反应性共混,制得了HMFNC-MB含量不同的PET/HMFNC-MB复合材料,采用DSC法研究了复合材料中PET的玻璃化转变,非等温冷、热结晶和熔融行为以及HDPE的非等温热结晶行为.结果表明,与原料PEF相比,PET/HMFNC-MB系列复合材料中PET的玻璃化转变温度Tg都有不同程度提高,最大提高幅度为6.7 ℃;冷结晶峰温(Tccp)均有不同程度下降,最大下降幅度达到10.2℃,结晶速率明显加快,过热度减小;熔融峰起始温度(Tmo)和峰温(Tmp)均有不同程度提高,最大提高幅度分别为9.0℃和3.5℃;热结晶峰起始温度和峰顶温虽均略有下降,但结晶速率明显加快.与原料HDPE的相比,PET/HMFNC-MB复合材料中HDPE的热结晶峰温降低了大约21℃,结晶过程很弥散.  相似文献   

3.
以不同长径比玻纤为增强填料,制备了聚醚醚酮/玻纤(PEEK/GF)复合材料,采用DSC、SEM、XRD、TG、DMA等测试了PEEK/GF复合材料的结构,并对其性能进行了表征。结果表明:不同长径比GF在基体中的分散以及与基体的黏结效果对复合材料的熔点、玻璃化转变温度、结晶度、储能模量、力学性能等产生不同影响,其中PEEK/连续长玻纤复合材料的综合性能最优;热处理工艺中,当温度为245℃、时间为6 h时,处理效果最佳,PEEK/连续长玻纤复合材料的拉伸强度提高了17.34%。  相似文献   

4.
以对苯二甲酸、乙二醇为主要原料,添加第三单体新戊二醇合成了一系列不同NPG含量的共聚酯(PENT),利用差示扫描热(DSC)研究了NPG对PET性能的影响。结果表明,随着NPG含量的增加,共聚酯的玻璃化转变温度(Tg)、熔点(Tm)和熔融结晶温度(Tmc)降低,冷结晶温度(Tc)升高,结晶能力逐渐减弱。  相似文献   

5.
程丝  闻荻江 《中国塑料》2005,19(9):42-47
采用XRD、DSC、SEM等研究了低熔点、半结晶聚合物EVA对非晶聚合物高抗冲聚苯乙烯/炭黑(PS-HI/ CB)复合材料的结构、导电性和正温度系数(PTC)效应的影响,结果表明,EVA,可提高复合材料的PTC强度,当PS- HI/EVA/CB=70:30:30时复合材料的PTC强度由不加EVA的2.2提高到5.1;复合材料的PTC转变温度与EVA 的熔点接近,因此,通过添加不同熔点的聚合物可实现控制复合材料的PTC转变温度的目的;SEM照片显示,随着 EVA含量的增加,两相结构发生变化,PS-HI由连续相转为椭圆形分散相,EVA由共连续结构转为网络状结构,直至网络状结构消失,而这种两相结构变化与复合材料的电阻率变化一致。  相似文献   

6.
通过熔融加工制备了尼龙1010(PA1010)/十八烷基胺插层蒙脱土(OMMT)纳米复合材料。研究了OMMT含量对PA1010/OMMT纳米复合材料力学性能的影响。当OMMT质量分数为2%时,该纳米复合材料的综合力学性能达到最优。用TG、DMTA、DSC等分析方法对材料的热稳定性、结晶性能等进行了分析表征。结果表明,OMMT的加入提高了纳米复合材料的结晶温度、玻璃化转变温度和储能模量,但纳米复合材料的热稳定性稍有降低。  相似文献   

7.
特种工程塑料聚醚醚酮(PEEK)的开发与应用   总被引:1,自引:0,他引:1  
李玉芳 《国外塑料》2004,22(11):38-41
聚醚醚酮树脂(Polyether Ether Ketone,简称PEEK树脂)是由4.4’-二氟二苯甲酮与对苯二酚在碱金属碳酸盐存在下,以二苯砜作溶剂进行缩合反应制得的一种新型半晶态芳香族热塑性工程塑料。它属耐高温热塑性塑料,具有较高的玻璃化转变温度(143℃)和熔点(334℃),负载热变型温度高达316℃(30%玻璃纤维或碳纤维增强牌号),  相似文献   

8.
《塑料科技》2016,(10):71-74
将竹纤维(BF)与聚己内酯(PCL)、聚乳酸(PLA)熔融共混,通过模压工艺制备了PCL/PLA/BF增强复合材料。研究了BF质量分数对该复合材料力学性能、热稳定性以及熔融结晶行为的影响。结果表明:随着BF质量分数的增加,PCL/PLA/BF复合材料的冲击强度、拉伸强度和断裂伸长率均先增大后减小,并均在BF质量分数为40%时达到最大值,分别为11.26 k J/m2、12.68 MPa和5.2%;BF质量分数对PCL/PLA/BF复合材料的热稳定性无明显影响;BF的加入使得复合材料中PCL、PLA共混物的玻璃化转变温度降低,但不同BF质量分数的复合材料玻璃化转变温度变化不大;BF的加入使得复合材料结晶温度小幅提升,但结晶峰强度随着BF质量分数的增加而逐渐减弱。  相似文献   

9.
对苯二甲酸乙二酯/聚乙二醇共聚醚酯的热性能研究   总被引:2,自引:2,他引:0  
陈放  方小兵  张大省 《合成纤维》2011,40(12):10-12
将含有磺酸盐基团化合物及不同添加量的聚乙二醇(PEG)与对苯二甲酸乙二酯共聚合成共聚醚酯(COPEET),利用差示扫描量热分析法(DSC)研究了一系列COPEET的玻璃化转变温度、结晶温度以及熔融温度等的变化规律。结果表明:随PEG添加量的增加,COPEET的玻璃化转变温度有规律地下降;PEG质量分数小于30%时,有利于冷结晶、结晶度下降;继续增加PEG则COPEET变得难于结晶;PEG质量分数小于40%时,热结晶容易,但结晶度下降;PEG添加量更高时,熔融结晶变得困难了;添加PEG会降低COPEET的熔点。  相似文献   

10.
采用模压工艺制备了玻璃纤维增强聚醚醚酮(PEEK/GF)复合材料,并研究了GF用量对复合材料力学性能、热力学性能、耐摩擦性能的影响。结果表明:当GF含量为10%时,复合材料的拉伸强度和弯曲强度均达最大值,分别为83.58 MPa和240.84 MPa;GF的引入对复合材料的熔点、玻璃化转变温度、结晶度、储能模量等产生不同影响,其中GF含量为20%的复合材料热力学性能最佳;复合材料的摩擦性能随GF的引入得到了极大的改善,添加25%的GF即可使摩擦系数降低73%。  相似文献   

11.
A series of modified poly(ether ether ketone) (PEEK) polymers were synthesized by introduction of addition ether groups from dihydroxydiphenyl ether (DHDE) into the PEEK structure. The inherent viscosity of the DHDE-modified PEEK increased with reaction time at 320 °C. DSC thermograms showed the melting points of the obtained PEEK decreased with the increase of the DHDE content in the backbone. The degradation temperature (Td) was slightly decreased by the introduction of DHDE. The crystallinity as measured via the X-ray diffraction (XRD) increases with the introduction of DHDE into the modified PEEK. The crystalline structure was identified as an orthorhombic structure with lattice constants a = 7.72 Å, b = 5.86 Å, and c = 10.24 Å. Due to the glass transition temperature (Tg) and the melting temperature (Tm) decreasing with the increase of the DHDE content in the reaction system. the processability of the resultant PEEK could be improved through this DHDE modification.  相似文献   

12.
采用4,4′-二氟二苯甲酮、对苯二酚为原料,以不同比例的碳酸钾和碳酸钠为复合成盐剂,二甲苯为脱水剂,二苯砜为溶剂成功制备了一系列聚醚醚酮(PEEK)树脂。通过傅里叶红外光谱和X射线衍射对PEEK树脂结构进行了表征,证明合成的样品是对苯二酚型PEEK树脂。其次,对所制样品分别进行力学性能、特性黏度、热性能测试,详细地探讨不同钾/钠比例的复合成盐剂对PEEK性能的影响。结果表明,所有样品均展示了优异的力学性能和热性能,其熔点和初始分解温度分别大于330℃和520℃,拉伸强度介于77~101 MPa。此外,当碳酸钾和碳酸钠的物质的量比为7∶3时,PEEK树脂的综合性能达到最优。  相似文献   

13.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

14.
Growths of poly(ether ether ketone) (PEEK) spherulites from both pure melt and its miscible blends with poly(ether imide) (PEI) have been studied by polarized optical microscopy. The nucleation density of PEEK spherulites was depressed upon blending with PEI, which can be attributed to the reduction in degree of supercooling arising from equilibrium melting point depression. A modified Lauritzen-Hoffman (L-H) theory was adopted to analyze the growth kinetics. Regime III-II transition was observed with the transition temperature decreasing with increasing PEI composition. Assuming free rotations of the virtual bonds in PEEK molecule, the side surface free energy of 12.0 erg/cm2 was calculated from the characteristic ratio. The fold surface free energy of 188 erg/cm2 and work of chain folding of 12.3 kcal/mol were then obtained from the modified L-H analysis.  相似文献   

15.
The crystallization and melting behavior of poly(ether ether ketone) (PEEK) in blends with poly(aryl ether sulfone) (PES) prepared by melt mixing are investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS). The presence of PES is found to have a notable influence on the crystallization behavior of PEEK, especially when present in low concentrations in the PEEK/PES blends. The PEEK crystallization kinetics is retarded in the presence of PES from the melt and in the rubbery state. An analysis of the melt crystallization exotherm shows a slower rate of nucleation and a wider crystallite size distribution of PEEK in the presence of PES, except at low concentrations of PES, where, because of higher miscibility and the tendency of PES to form ordered structures under suitable conditions, a significantly opposite result is observed. The cold crystallization temperature of the blends at low PES concentration is higher then that of pure PEEK, whereas at a higher PES concentration little change is observed. In addition, the decrease in heat of cold crystallization and melting, which is more prevalent in PEEK‐rich compositions than in pure PEEK, shows the reduction in the degree of crystallinity because of the dilution effect of PES. Isothermal cold crystallization studies show that the cold crystallization from the amorphous glass occurs in two stages, corresponding to the mobilization of the PEEK‐rich and PES‐rich phases. The slower rate of crystallization of the PEEK‐rich phase, even in compositions where a pure PEEK phase is observed, indicates that the presence of the immobile PES‐rich phase has a constraining influence on the crystallization of the PEEK‐rich phase, possibly because of the distribution of individual PEEK chains across the two phases. The various crystallization parameters obtained from WAXS analysis show that the basic crystal structure of PEEK remains unaffected in the blend. Further, the slight melting point depression of PEEK at low concentrations of PES, apart from several other morphological reasons, may be due to some specific interactions between the component homopolymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2906–2918, 2003  相似文献   

16.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
通过紫外光接枝和湿化学法连用在聚醚醚酮 (PEEK)表面固定上具有抑菌杀菌作用的壳聚糖。结果表明,相比未改性的PEEK表面,改性后材料表面亲水性提高;通过扫描电子显微镜和X射线光电子能谱分析证明壳聚糖成功接枝在了PEEK薄膜表面;随着壳聚糖浓度的提高,材料表面的壳聚糖接枝率增加。  相似文献   

18.
Abstract

Novel poly(ether ether ketone) (PEEK)/organically modified montmorillonite (OMMT) composites containing 0–10 wt-% fractions of OMMT were prepared by melting blending method and the microstructure, thermal and mechanical properties were investigated using different characterisation techniques. X-ray diffraction and transmission electron microscopy showed that the OMMT was well dispersed with microscale in the PEEK matrix. Differential scanning calorimetry indicated that the glass transition temperature T g and melt temperature T m of PEEK/OMMT composites (POMCs) were hardly affected by the addition of OMMT, while the crystal temperature T c decreased when the amount of OMMT excessed 1 wt-%. The data of thermogravimetric analysis exhibited that the thermal stability of POMCs in higher temperature region was better than that of pure PEEK. The results of mechanical properties test revealed that modulus and strength of POMCs increased with the content of OMMT, whereas the elongation at break and impact strength of POMCs decreased.  相似文献   

19.
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3‐trifluoromethylbenzene side group (F‐PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK‐rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G′ is larger than dynamic loss modulus G″, showing the feature of elastic fluid. For F‐PAEK‐rich systems, the rheological behavior of the blends has a resemblance to pure F‐PAEK, i.e., G″ is greater than G′, showing the characteristic of viscous fluid. When the PEEK content is in the range of 50–70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F‐PAEK content. However, at 50% weight fraction of PEEK, the viscosity‐composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition. The changes of G′ and G″ with composition show a trend similar to that of complex viscosity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4040–4044, 2006  相似文献   

20.
The effects of melting time (tmelt) and annealing time (ta) at a temperature closer to the melting point of polyphenylene sulfide (PPS) on the multiple melting behavior of neat PPS, and PPS component in their blends have been investigated by differential scanning calorimetry (DSC). It is found that double endotherm peak of PPS annealed at 275°C for less than three hours is different from that annealed for twelve hours. Double endotherm peak of PPS in PEEK/PPS blends shifts to lower temperature, and the intensity of the upper melting peak decreases significantly by addition of polyether ether ketone (PEEK). An additional third melting peak could be observed. The temperature of third melting peak is above 310°C and increases as the ta and PEEK content are increased. For PEK-C/PPS blends, the lower and upper melting temperatures of the PPS component are higher than that of neat PPS annealed at 275°C for twenty-three hours. © 1996 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1001–1008, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号