首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

2.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

3.
Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO2–3 mol% Y2O3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO2–3 mol% Y2O3 produced mixed results. In the case of submicrometer ZrO2–3 mol% Y2O3, neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO2–3 mol% Y2O3, fast heating rates severely retarded densiflcation and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO2–3 mol% Y2O3 specimens.  相似文献   

4.
The pseudoternary system ZrO2-Y2O3-Cr2O3 was studied at 1600°C in air by the quenching method. Only one intermediate compound, YCrO3, was observed on the Y2O3−Cr2O3 join. ZrO2 and Y2O3 formed solid solutions with solubility limits of 47 and 38 mol%, respectively. The apex of the compatibility triangle for the cubic ZrO2, Cr2O3, and YCrO3 three-phase region was located at =17 mol% Y2O3 (83 mol% ZrO2). Below 17 mol% Y2O3, ZrO2 solid solution coexisted with Cr2O3. Cr2O3 appears to be slightly soluble in ZrO2(ss).  相似文献   

5.
ZrO2–Y2O3–CuO nanocrystalline powders have been synthesized using a chemical coprecipitation method. Nano-powders were compacted uniaxially and densified in a muffle furnace. Densification studies show that the presence of CuO accelerates the densification process of ZrO2(3Y). A fully dense (>96%) pellet of ZrO2(3Y)/5 mol% CuO was obtained after sintering at 900°C, with a very small grain size of 44 nm calculated by X-ray line broadening.  相似文献   

6.
The phase diagram for the system ZrO2-Y2O3 was redetermined. The extent of the fluorite-type ZrO2-YzO3 solid solution field was determined with a high-temperature X-ray furnace, precise lattice parameter measurements, and a hydrothermal technique. Long range ordering occurred at 40 mol% Y2O3 and the corresponding ordered phase was Zr3Y4OL12. The compound has rhombohedra1 symmetry (space group R 3), is isostructural with UY6Ol2 and decomposes above 1250±50°C. The results indicate that the eutectoid may occur at a temperature <400°C at a composition between 20 and 30 mol% Y2O3 Determination of the liquidus line indicated a eutectic at 83± 1 mol% Y2O3 and a peritectic at 76 ± 1 mol% Y2O3.  相似文献   

7.
MgO addition to 3 mol% Y2O3–ZrO2 resulted in enhanced densification at 1350°C by a liquid-phase sintering mechanism. This liquid phase resulted from reaction of MgO with trace impurities of CaO and SiO2 in the starting powder. The bimodal grain structure thus obtained was characterized by large cubic ZrO2 grains with tetragonal ZrO2 precipitates, which were surrounded by either small tetragonal grains or monoclinic grains, depending on the heat-treatment schedule.  相似文献   

8.
The phase relations for the system y2o3–Ta2o5 in the composition range 50 to 100 mol% Y2O3 have been studied by solid-state reactions at 1350°, 1500°, or 17000C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phases (W2 phase, space group C2221), fluorite-type cubic phases (F phase, space group Fm3m )and another orthorhombic phase (O phase, space group Cmmm )are found in the system. The W2 phase forms in 75 mol% Y2O3 under 17000C and O phase in 70 mol% Y2O3 up to 1700°C These phases seem to melt incongruently. The F phase forms in about 80 mol% Y2O3 and melts congruently at 2454° 3°C. Two eutectic points seem to exist at about 2220°C 90 mol% Y2O3, and at about 1990°C, 62 mol% Y2O3. A Phase diagram including the above three phases were not identified with each other.  相似文献   

9.
α-Al2O3-doped (8 mol % Sc2O3)ZrO2 composite solid electrolyte has been investigated in the fabrication of solid-state ceramic gas sensors. The microstructure and electrical conductivity of the composite solid electrolyte have been measured over a range of temperature from 240°C to 596°C. The composite solid electrolyte has been found to exhibit a higher conductivity compared with the commonly used (8 mol% Y2O3)ZrO2 at temperatures above ∼448°C. The sensing characteristics for NO2 detection have been studied in the temperature range of 500–650°C at the low concentration from 10 to 30 ppm and at high concentration from 100 to 500 ppm of NO2. The NO2 sensor was found to respond reproducibly and rapidly to the variations of NO2, concentration, indicating that the composite solid electrolyte has promising application as a solid electrolyte for on-board exhaust gas monitoring.  相似文献   

10.
The phase equilibria in the zirconia-rich part of the system ZrO2−Yb2O3−Y2O3 were determined at 1200°, 1400°, and 1650°C. The stabilizing effects of Yb2O3 and Y2O3 were found to be quite similar with <10 mol% of either being necessary to fully stabilize the cubic fluorite-structure phase at 1200°C. The two binary ordered phases, Zr3Yb4O12 and Zr3Y4O12, are completely miscible at 1200°C. These were the only binary or ternary phases detected. The ionic conductivities of ternary specimens in this system were measured using the complex impedance analysis technique. For a given level of total dopant, the substitution of Yb2O3 for Y2O3 gives only minor increases in specimen conductivity.  相似文献   

11.
Tetragonal ZrO2 ( t -ZrO2) solid solutions were prepared with addit ons of 2 mol% Y2O3 plus up to 0.45 mol% Nb2O5. The thermal expansion coefficients in both the a- and c -axis lattice directions increased with Nb2O5 alloying and the thermal expansion in the c -axis direction was greater than that in the a -axis direction over the entire composition range. This anisotropic thermal expansion behavior was related to the 4-fold coordination of Nb5+ with oxygen ions in t -ZrO2 solid solutions in the system ZrO2–Y2O3–Nb2O5. The fracture toughness continuously increased with Nb2O5 alloying and suggested that the c/a axial ratio is a more significant factor than the internal stress that arises from the thermal expansion anisotropy, in the determination of the transformability of t -ZrO2 in this system.  相似文献   

12.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

13.
Valence state and site symmetry of Ti ions in TiO2–Y2O3–ZrO2 powders with 2 mol% Y2O3 and 5, 10, 15, and 20 mol% TiO2, respectively, are studied by X-ray absorption near-edge spectroscopy (XANES). Tetravalent Zr4+ ions are replaced predominantly by Ti4+ ions. Within the solubility region of Ti ions, a subsequent displacement of Ti ions from the center of symmetry is observed with increasing TiO2 content in TiO2–Y2O3-stabilized tetragonal ZrO2 polycrystals (Ti-Y-TZP) under investigation. This behavior cannot be interpreted with a random substitution of Ti4+ ions on Zr4+ lattice sites. On the contrary, this correlation between the TiO2 content in Ti-Y-TZP and the shift of Ti ions indicates an increasing interaction between the Ti ions with growing TiO2 content, caused by a subsequent clustering of Ti ions.  相似文献   

14.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

15.
Subsolidus phase relations in the low-Y2O3 portion of the system ZrO2-Y2O3 were studied using DTA with fired samples and X-ray phase identification and lattice parameter techniques with quenched samples. Approximately 1.5% Y2O3 is soluble in monoclinic ZrO2, a two-phase monoclinic solid solution plus cubic solid solution region exists to ∼7.5% Y2O3 below ∼500°C, and a two-phase tetragonal solid solution plus cubic solid solution exists from ∼1.5 to 7.5% Y2O3 from ∼500° to ∼1600°C. At higher Y2O3 compositions, cubic ZrO2 solid solution occurs.  相似文献   

16.
The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol% Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3- x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log p O2=−20 (where p O2 is given in units of atm), which indicates practical usefulness as an ionic conductor.  相似文献   

17.
The ionic conductivity of the hafnia-scandia, hafnia-yttria, and hafnia-rare earth solid solutions with high dopant concentrations of 8, 10, and 14 mol% was measured in air at 600° to 1050°C. Impedance spectroscopy was used to obtain lattice conductivity. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. For all investigated dopant concentrations the ionic conductivity was shown to decrease as the dopant radius increased. The activation enthalpy for conduction was found to increase with dopant ionic radius. The fact that the highest ionic conductivity among 14-mol%-doped systems was obtained with HfO2─Sc2O3 suggested that the radius ratio approach should be used to predict the electrical conductivity behavior of HfO2─R2O3 systems. A qualitative model based on the Kilner's lattice parameter map does not seem to apply to these systems. For the three systems HfO2─Yb2O3, HfO2─Y2O3, and Hf2O3─Sm2O3 a conductivity maximum was observed near the dopant concentration of 10 mol%. Deep vacancy trapping is responsible for the decrease in the ionic conductivity at high dopant concentrations. Formation of microdomains of an ordered compound cannot explain the obtained results. A comparison between the ionic conductivities of doped HfO2 and ZrO2 systems indicated that the ionic conductivities of HfO2 systems are 1.5 to 2.2 times lower than the ionic conductivities of ZrO2 systems.  相似文献   

18.
The average grain size of ZrO2(+Y, o,) materials sintered at 1400°C was observed to depend significantly on the Y2O3 content. The average grain size decreased by a factor of 4 to 5 for Y2O3 contents between 0.8 and 1.4 mol% and increased at Y2O3 contents of 6.6 mol%. Grain growth control by a second phase is the concept used to interpret these data; compositions with a small grain size lie within the two-phase tetragonal + cubic phase field, and the size of the tetragonal grains is believed to be controlled by the cubic grains. This interpretation suggests that the Y2O3-rich boundary of the two-phase field lies between 0.8 and 1.4 mol% Y2O3. Transformation toughened materials fabricated in this binary system must have a composition that lies within the two-phase field to obtain the small grain size required, in part, to retain the tetragonal toughening agent.  相似文献   

19.
Dense, ZrO2-dispersed Si3N4 composites without additives were fabricated at 180 MPa and ∼1850° to 1900°C for l h by hot isostatic pressing using a glass-encapsulation method; the densities reached >96% of theoretical. The dispersion of 20 wt% of 2.5YZrO2 (2.5 mol% Y2O3) in Si3N4 was advantageous to increase the room-temperature fracture toughness (∼7.5 MPa˙m1/2) without degradation of hardness (∼15 GPa) because of the high retention of tetragonal ZrO2. The dependence of fracture toughness of Si3N4–2.5YZrO2 on ZrO2 content can be related to the formation of zirconium oxynitride because of the reaction between ZrO2 and Si3N4 matrix in hot isostatic pressing.  相似文献   

20.
Amorphous films in the system Al2O3–Y2O3 were prepared by the rf sputtering method in the range of 0–76 mol% Y2O3, and their density, refractive index, and elastic constants were measured. All of the physical properties of the amorphous Al2O3–Y2O3 films had a similar compositional dependence; that is, they increased continuously, but not linearly with increasing Y2O3 content. To confirm the coordination states of aluminum and yttrium ions in the amorphous Al2O3–Y2O3 films, the Al K α X-ray emission spectra and the X-ray absorption near edge structures (XANES) were measured. The average coordination number of aluminum ions in the amorphous films containing up to about 40 mol% Y2O3 content was 5, that is a mixture of 4-fold- and 6-fold-coordinated states. In the region of more than about 50 mol% Y2O3, the fraction of the 6-fold-coordinated aluminum ions increased with increasing Y2O3 content, while the results led to the conclusion that the coordination number of yttrium ions was always 6, regardless of composition. These results indicate that, in amorphous films in the system Al2O3–Y2O3, the change of the coordination state of aluminum ions has an important effect on physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号