首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铬和钼对钢的局部腐蚀发展过程的影响   总被引:1,自引:0,他引:1  
为阐明铬和钼对钢的局部腐蚀发展过程的影响,在类似于钢的闭塞腐蚀电池(OCC)内部溶液的条件下,研究了纯铬、纯铝和某些不锈钢的电化学行为。实验所用的溶液为无氧FeCl_2和/或CrCl_3。当pH高于约1.8时,Cr是钝化的,因此,在局部腐蚀发展的早期阶段,铬可起阻滞作用,但是,Cr~(3+)的水解可使pH降至更低值,在这种低pH和高Cl~-浓度条件下,在与钢的局部腐蚀对应的电位区,Cr是活化的。而在同样条件下,Mo是钝化的,而且在此电位区Mo的钝性归因于MoO_2膜的生成,这种氧化膜非常稳定,且保护性很好,因此,在局部腐蚀的深入发展阶段,Mo可有效地抑制腐蚀的发展。  相似文献   

2.
《Corrosion Science》1986,26(1):7-14
Practically all constructional steels are working under applied loads and environments. Below some stress levels the deterioriation of the material occurs by typical corrosion modes. Modern constructions are often loaded with enough high stresses to promote catastrophic failures due to stress corrosion crack propagation. Actually the whole range of metallic materials used in reliable constructions which are exposed to corrosive environments should be tested for their sensitivity to stress corrosion cracking. By measuring the material constant KISCC (critical stress intensity factor for stress corrosion cracking) it is possible to construct the reliable parts working in a safe range of stresses, which cannot be computed knowing yield strength of the material only. For measuring KISCC values of high strength CrMnSiNi and CrMo steels, original stands were built and long-term (> 103h) tests applied by means of the cantilever beam method. Sensitivity of tested steels to stress corrosion cracking was expressed as a ratio KISCC:KIC. Some other observations concerning kinetics of crack propagation and other properties of the materials have been carried out.  相似文献   

3.
The corrosion behavior of bulk metallic glasses (BMGs) (Fe41Co7Cr15Mo14C15B6Y2)100–xCrx (x=0, 4, 8, 12, molar fraction, %) was investigated in 1 mol/L HCl aqueous solution with electrochemical tests. The electrochemical measurements demonstrate that the passive current density of Fe-based amorphous alloy is reduced by about one order of magnitude, and meanwhile, the stability of passive film can be guaranteed by the Cr/Mo molar ratio. The Mott–Schottky (M–S) curves show that the passive film is the densest when the molar ratio of Cr/Mo is between 1.37 and 1.69. X-ray photoelectron spectroscopy (XPS) analysis was performed to clarify chemical states of elements in the passive films. The results show that the corrosion resistance of the alloy is related to the molar ratio of Cr/Mo. The stability of passive film is determined by the synergistic action of Cr and Mo elements. The main component of the passive film is Cr3+ oxide. When the potential is greater than 0.5 V (vs SCE), Mo6+ ions play an important role in keeping the stability of the passive film. The appropriate molar ratio of Cr/Mo can reduce the dissolution rate of the passive film.  相似文献   

4.
Austenitic stainless steels with up to 6.1 wt.% Mo were nitrided at 425 °C and examined in 0.1 M Na2SO4 without and with chlorides at pH 3.0 and 6.5. Nitrided steels exhibited an increased resistance to pitting, but at pH 3.0 they had a decreased resistance to general corrosion. After corrosion at pH 3.0 surface films contained chromium nitrides and oxides of Mo, Cr and Fe. It is proposed that the improved pitting resistance of nitrided steels is associated with the initially accelerated dissolution which leads to the accumulation of corrosion resistant CrN and of oxidised steel components.  相似文献   

5.
The electrochemical and corrosion behavior of a stainless-steel-based alloy made as a prototype metallic nuclear wasteform to immobilize 99Tc, has been studied in a number of reference solutions ranging in pH from 4 to 10. The results showed the 47SS(304)-9Zr–23Mo prototype alloy contained at least five distinct phases with the majority of the Re, used as a Tc surrogate, contained within a Fe2Mo intermetallic phase. Polarization studies showed this alloy exhibited generally passive behavior in a range of dilute aqueous environments. Impedance measurements indicated passivity breakdown events can occur and lead to localized corrosion, especially in slightly alkaline conditions.  相似文献   

6.
Abstract

Corrosion of a tube made up of 9Cr–1Mo, 2·25Cr–1Mo, and 2·25Cr–1Mo–Nb ferritic steels and containing artificial defects has been investigated under realistic steam generator conditions (355°C, 17·6 MPa) with acid chloride fault water chemistry (2 mg/kg HCl). Four regions of corrosion and magnetite deposition behaviour were observed on the tube surface. In non-heat flux regions, magnetite deposition was affected by mass transfer and probably also by surface potential. In low heatflux regions (<660 kW m?2) observed increases in the rates of magnetite deposition and corrosion wereprobably due to rises in the degree of iron supersaturation and HCl concentration, brought about by boiling. Enhanced HCl concentrations in the normal heat flux region (660 kW m?2) prevented magnetite deposition and caused an increase in corrosion of the three steels. Increases in corrosion and magnetite deposition were also observed at the weld between the 9Cr–1Mo and 2·25Cr–1Mo steels. In defects, accelerated corrosion was seen only in the 9Cr–1Mo steel and was confined to the top 0·15 mm. It is concluded that the corrosion behaviour observed in this work is determined by the residence time and concentration of solutions of HCl on tube and defect surfaces.  相似文献   

7.
Present study is focused on the corrosivity of anaerobic treated distillery effluent and corrosion performance of mild steel and stainless steels. Accordingly, electrochemical polarization tests were performed in both treated distillery and synthetic effluents. Polarization tests were also performed in synthetic solutions and it was observed that Cl? and K+ increase whereas SO4 ?, PO4 ?, NO3 ?, and NO2 ? decrease the corrosivity of effluent at alkaline pH. Further, comparison in corrosivity of distillery and synthetic effluents shows the former to be less corrosive and this is assigned due to the presence of amino acids and melanoidins. Mild steel experienced to have the highest corrosion rate followed by stainless steels—304L and 316L and lowest in case of SAF 2205. Relative corrosion resistance of stainless steels is observed to depend upon Cr, Mo, and N content.  相似文献   

8.
This paper describes the effects of temperature and hydrodynamics on the CO2 corrosion of two stainless steels in the presence of free acetic acid. The experimental set-up developed in this work was able to evaluate the corrosion behavior of 13Cr and 13Cr5Ni2Mo stainless steels in static conditions with a flow velocity of 1 m s−1 at temperatures of 125, 150 and 175 °C. Electrochemical tests of impedance and linear polarization resistance have been carried out, as well as mass loss tests and surface analysis.  相似文献   

9.
To achieve the targets of high energy efficiency and reduced CO2 emission, advanced oxygen-fired pressurized fluidized bed combustion technology is being developed. The generated flue gas condensates are very corrosive, but very limited information is available to select appropriate alloys for the cost-effective construction and long-term safe operation of flue gas components. Thus, this study investigated the corrosion performance of P91 and DSS 2205 steels in the simulated condensates at 60°C–150°C. The dominant reactions on the two steels were considerable oxide formation and high chemical dissolution of the formed oxides instead of localized pitting. The increase in temperature leads to an exponential increase in the long-term corrosion rates of the steels. Benefited from its high Cr and Mo contents, DSS 2205 steel exhibited much better corrosion resistance, and the formed surface scales consisted of inner Fe-enriched and outer Cr-enriched oxides in which Cr2O3 was transformed into Cr(OH)3 with the increase in temperature. The corrosion products on P91 steel consisted of inner Cr–Fr–Mo oxides and outer Fe-enriched oxides, which were porous and unable to protect the steel.  相似文献   

10.
The influence of the molybdenum content on the corrosion rate of austenitic Cr-Ni steels in the active condition The corrosion rate of steels X 5 CrNi 189, X 5 CrNoMo 18 10, X 5 CrNiMo 18 12 and X 5 CrNiMo 17 13 has been investigated under potentiostatic conditions in the active zone in 2 n H2SO4 flushed with nitrogen and sulphur dioxide. The active rest potential of the steels is in the vicinity of the active-passive transition, and the corrosion rate increase at cathodic polarisation. With increasing Mo content, the corrosion rate is reduced in the active condition, but the passivation potential and the corrosion rate in the passive condition are not influenced. In the acid flushed with SO2, the corrosion rate is increased in the active range, and the latter is extended in the direction of the electronegative potentials. With these steels, even a pre-activation of the specimens has an influence on the test results. In the active-passive transition zone, the steels in the test solution containing SO2 are partially passive and subject to local corrosion attacks.  相似文献   

11.
The susceptibility of a range of ferritic Cr Mo steels to sensitization during welding has been investigated. No localized attack occurred in any of the standard test solutions used to assess susceptibility to intergranular corrosion. However potentiostatic etching in 16 wt%H2SO4 at 18°C produced narrow trenching close to the heat affected zone-parent metal interface in the 12%Cr 1%Mo and 9%Cr 1%Mo steels. The thermal history and the metallurgical structure of the attacked region have been examined. The effect of post weld heat treatment on the occurrence of localized attack has been studied and correlated with hardness changes. Analytical and electrochemical measurements have been used to test the various theories proposed to explain intergranular corrosion in ferritic materials. Finally the implications of these findings are considered.  相似文献   

12.
Electrochemical localized corrosion tests in substitute ocean water at 40°C and 70°C and ASTM G48 tests in 6% FeCl3 solution were performed on three classes of stainless steels: Ni-austenitic (both traditional and with high nitrogen content ones), high nitrogen Mn-austenitic nickel free and duplex (both traditional and with high nitrogen content ones). The Pitting Resistance Equivalent formula, PREMn = % Cr + 3.3% Mo + 30% N – 1% Mn, proposed to consider the presence of noticeable amount of manganese in some of the new high nitrogen stainless steels yields good linear correlation with experimental results. The existence of a threshold value of PREMn (≥ 45) to attain excellent localized corrosion resistance has been recognized. According to this observation the high nitrogen Ni-austenitic 21Cr24Ni6MoO.24N, 24Crl8Ni4MoO.48N, 24Cr22Ni7MoO.52N and the duplex 25Cr8Ni4MoO.26N “super” stainless steels are immune to localized attack also in the most severe electrochemical test conditions. This superiority is maintained also in ASTM G48 tests. Due to their values of Critical Crevice Temperature (CCTASTM G48 ≥ 35°C) these steels seem suitable for practical service in seawater environments up to about 30 °C.  相似文献   

13.
D.R. Qu  H.M. Jing  Z.M. Yao  W. Ke 《Corrosion Science》2006,48(8):1960-1985
The corrosion of Q235 and 5Cr1/2Mo steels in synthetic refining media containing naphthenic acid and/or sulphur compounds was studied to evaluate naphthenic acid corrosion (NAC), sulphidic corrosion (SC), and their interaction. Corrosion dependencies on the test duration, temperature, total acid number (TAN) and content of sulphur compound were assessed. Specimens after NAC and SC tests were characterized by SEM/EDX, and XRD. It is found that in liquid phase of media containing only naphthenic acid and at temperature about 230 °C, 5Cr1/2Mo and Q235 steels have almost the same NAC rate, and above 230 °C, 5Cr1/2Mo has a higher NAC rate than Q235 has due to the higher NAC activation energy (63.2 kJ mol−1) of 5Cr1/2Mo than that of Q235 (54.0 kJ mol−1), indicating that increasing temperature accelerates NAC rate of 5Cr1/2Mo more than that of Q235. In oil containing only dimethyl disulphide, the growth of SC film follows parabolic kinetics, and the film of Q235 grows faster than that of 5Cr1/2Mo while SC rate of Q235 is higher than that of 5Cr1/2Mo. In oil containing both naphthenic acid and dimethyl disulphide, 5Cr1/2Mo has a lower corrosion rate than Q235 has. On the basis of “naphthenic acid corrosion index” (NACI), the benefits of 5Cr1/2Mo over Q235 should ascribe to that the pseudo-passive film for 5Cr1/2Mo has better NAC resistance than that for Q235. This is close related to the existing of additional chromium sulphide (Cr5S8) on the pseudo-passive film of 5Cr1/2Mo, in contrast with the pyrrhotite (Fe7S8) and troilite (FeS) on the film of Q235.  相似文献   

14.
In order to clarify the mechanism for increased resistance to pitting in acid chloride solutions by addition of Me to CrNi stainless steels, the anodic polarization curves, a.c. electrode impedances, ellipsometric parameters and X-ray photo-electron spectra have been measured on the Mo-containing steels passivated in 1N HCl. The results showed that the presence of an adequate amount of Cr is indispensable for the improvement of pitting resistance by the Mo addition. The passive films of the Mo-containing steels were found to be composed of a complex oxyhydroxide containing Cr3+ Fe2+, Ni2+, Mo6+ and Cl? and showed a rather higher d.c. resistance in HCl solution than in H2SO4 solution. The thickness of the passive film increases with increase in Mo content.  相似文献   

15.
The corrosion behavior of Ni3Al-based intermetallic alloys in a 0.5 M NaOH solution was studied at 25 °C. The open circuit potential, cathodic and anodic potentiodynamic polarization, Tafel plots and linear polarization resistance measurements were used to characterize the corrosion behavior. For the Ni3Al(B, Zr) alloy, potentiodynamic polarization curves showed a wide passive region that can be found between about ?0.220 VSCE and 0.520 VSCE. On the other hand, a narrow passive region, in the range of potentials from about ?0.180 VSCE to 0.180 VSCE, was observed for the Ni3Al(B, Zr, Cr, Mo) alloy. Chromium, as an alloying element in the Ni3Al(B, Zr, Cr, Mo) alloy, contributes to transpassive dissolution of the passive film at much lower anodic potentials and remarkably reduces the passivation region. The experiments indicated also that damaged passive films on alloys repairs itself and pits do not initiate. The surface of both alloys and passive films possess extremely high corrosion resistance in a studied solution. However, Tafel and linear polarization tests revealed that freshly exposed surfaces of the Ni3Al(B, Zr) alloy exhibited better corrosion resistances than the Ni3Al(B, Zr, Cr, Mo) alloy. Both methods, used for the determination of corrosion rates gave very similar results. The calculated corrosion rates are about 2.8 ·10?3 and 6.0·10?3 mm year?1 for the Ni3Al(B, Zr) alloy and B, respectively.  相似文献   

16.
Recent developments in ferritic stainless steels The pitting resistance of ferritic stainless steels in HCl is visibly improved by Mo, in particular in the case of vacuum-melted material. In this context the ratio Cr:Mo = 25:2 is superior ta Cr:Mo = 17:3; addition of Mo prevents, beyond that, crevice corrosion. Ti increases resistance in the Strauß test but not in the Huey test, while Nb turns out to have a positive effect in either test. Steels containing Cr: Mo = 17:l are certainly still susceptible to pitting, but no longer to stress corrosion cracking in boiling MgCl2, solution; stress corrosion cracking is not observed in 55% boiling Ca(NO3)2, and 25% boiling NaOH, but after annealing at 980 °C intercrystalline corrosion takes place. The test duration required for establishing cracking susceptibility is considerably shorter with ferritic than with austenitic steels (100 and 1000 to 2000 hours respectively).  相似文献   

17.
The life of a concrete structure exposed to deicing compounds or seawater is often been limited by chloride induced corrosion of the steel reinforcement. A complete assessment of the potential benefits afforded by new candidate rebar alloys must address both the lateral and radial corrosion propagation behavior in comparison to conventional steel as well as other factors that might affect the risk of corrosion‐induced concrete cracking. The radial (depth) and lateral (length) corrosion propagation behavior of 18% Cr + 2.8% Mo (S31653) stainless steel, 21% Cr (S32101) duplex stainless steel, and 9% Cr steel compared to plain ASTM A615 carbon steel were characterized in saturated Ca(OH)2 solution. Radial pit growth was found to be Ohmically controlled for all materials but repassivation occurred more readily at high applied potentials for 18% Cr + 2.8% Mo and 21% Cr stainless steels. Conversely, pit growth on plain steel propagated at all applied anodic potentials and did not repassivate until deactivation by cathodic polarization. Stainless steel also showed the highest resistance to lateral corrosion propagation from an active site during microelectrode array testing. 21% Cr duplex stainless and 9% Cr steel showed similar radial propagation behavior and corrosion morphology, which was intermediate to that of plain steel and S31653 stainless steel. Based on an existing concrete cracking model, it is expected that 9–21% Cr and 18% Cr + 2.8% Mo corrosion resistant rebar materials would require a greater depth of corrosion attack than carbon steel before damaging concrete via corrosion product formation.  相似文献   

18.
Determination of resistance to stress corrosion cracking (SCC) of high-alloy special steels in chloride-containing aqueous media The 18 Cr 10 Ni(Mo) based stainless steels have been continually improved by raising the Cr, Ni and Mo contents. The behavior of these high-alloy steels towards SCC was determined in test media generally used in practice since the question of the resistance to stress corrosion cracking (SCC) had still remained unanswered to a large extent. SCC tests on U-bend samples in boiling 62% CaCl2 solution showed a good differentiation depending on the Ni and Mo contents. With increasing Ni content, the susceptibility of special high-alloy steels to SCC is shifted towards longer service lives, alloys containing ≧ 42% by weight of Ni being resistant. High-Mo special alloy steels are more resistant to SCC than low-Mo special alloy steels. These results could be confirmed by tests carried out on circular cross section samples in boiling 62% CaCl2 solution under constant load and potentiostatic control. The free corrosion potentials recorded for 25% Ni special alloy steel and Ni-based alloys are within the potentiostatically determined range of insusceptibility to SCC. The high-Mo special alloy steel X 2 NiCrMoCu 25 20 6 (1.4529) shows the same critical SCC potential on the anodic side as the Ni alloy NiCr21 Mo (2.4858). Superferrit X 1 CrNiMoNb 28 4 2 (1.4575) and austenitic ferritic steel X 2 CrNiMoN 22 5 (1.4462) showed that the SCC behavior was unsatisfactory in both tests as in the case of steel X 10 CrNiMoTi 18 10 (1.4571). Tests in boiling 4 m NaCl showed no SCC, not even under the aggrevated test conditions in the test set-up. The great influence of the oxygen content was demonstrated in tests carried out in the autoclave with defined oxygen and chloride concentrations. The resistance of the steels to SCC decreases under air-saturated conditions (8 … 10 ppm O2) whereas the chloride concentration (200 and 2000 ppm Cl?) does not exercise an important influence. U-bend samples should be given preference to Erichsen samples for SCC tests. SCC break characteristics could be determined metallographically and by scanning electron microscope.  相似文献   

19.
Effect of potential on corrosion of Mo-free and Mo-bearing steels in solutions of calcium nitrate and sodium hydroxide The effect of potential on the corrosion behaviour of three low alloy steels with different carbon and molybdenum contents (0.08 C, 0.01 Mo; 0.08 C, 0.98 Mo; 0.18 C, 1.10 Mo) was investigated in boiling 60 wt.% Ca(NO3)2 solution (DIN 50 915) and in boiling concentrated NaOH solutions (20 and 35 wt.% NaOH) by potentiodynamic and chronopotentiostatic polarization measurements (i/E curves) and chronopotentiostatic mass loss measurements (corrosion rate v vs. potential E curves). In Ca(NO3)2 solution, i/E measurements give no information about the effect of potential on the anodic dissolution. For the materials investigated, v/E measurements indicate the existence of potential ranges with pronounced differences of the corrosion response. It can be differentiated between active, passive, and transpassive ranges, and also a potential range of secondary passivity was established. Transpassivity and secondary passivity are markedly pronounced with the molybdenum bearing steels but not with the steel free from molybdenum. There are no hints to the occurrence of intergranular attack in the specimens which are free from of internal and external mechanical stresses, whereas such hints could be derived from the shape of the i/E curves. Nevertheless, under mechanical stresses (constant load, CERT conditions) the materials are susceptible to intergranular SCC. The conception that intergranular SCC of low alloy steels in Ca(NO3)2 solution is connected with a break-through potential of grain boundary corrosion and hence is to be interpreted as an intergranular attack which, under mechanical stresses, runs in a modified form as SCC with intergranular crack path, cannot be maintained in such general terms. A pronounced active/passive behaviour is observed in NaOH. The effect of potential on anodic metal dissolution which is derived from v/E curve is also established by i/E measurements. For molybdenum bearing steels, the active potential range is somewhat extended to more positive potentials. Manifestations of localized attack, e.g., intergranular corrosion, do not occur. From the investigations, no hints to the cause of the deterioration of the resistance to intergranular SCC in caustic solutions by molybdenum can be derived.  相似文献   

20.
The effects of rare earth metal (REM: Ce, La) and Ba addition on aqueous corrosion properties of super duplex stainless steels (SDSS) were investigated by electrochemical tests and surface analyses. The results of potentiodynamic test indicated that the passive range increased by the addition of Ce, La, and Ba, indicating increased relative resistance to localized corrosion. The EIS measurements showed that the Ce-La-Ba-bearing alloys exhibited higher Rct and Rp values than the Ce-La-Ba-free alloy at the passive and breakdown states. Furthermore, the additions of REMs and Ba together promoted the formation of dense chromium-enriched passive film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号