首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

2.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-K dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-K dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/ A(2-5 /spl times/ 10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8 /spl times/ 10/sup 17/ cm/sup -3/ eV/sup -1/ to 1, 3 /spl times/ 10/sup 19/ cm/sup -3/ eV/sup -1/ somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-K/gate stacks, relative comparison among them and to the Si-SiO/sub 2/ system.  相似文献   

3.
This paper describes an extensive experimental study of TiN/HfO/sub 2//SiGe and TiN/HfO/sub 2//Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 /spl Aring/ the electrical oxide thickness in inversion. Due to this interface optimization, Si/sub 0.72/Ge/sub 0.28/ pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO/sub 2//Si reference and a 90% higher mobility than the HfO/sub 2//Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-/spl kappa//metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-/spl kappa/ gate dielectrics.  相似文献   

4.
We have integrated the low work function NiSi:Hf gate on high-/spl kappa/ LaAlO/sub 3/ and on smart-cut Ge-on-insulator (SC-GOI) n-MOSFETs. At 1.4-nm equivalent oxide thickness, the NiSi:Hf-LaAlO/sub 3//SC-GOI n-MOSFET has comparable gate leakage current with the control Al gate on LaAlO/sub 3/-Si MOSFETs that is /spl sim/5 orders of magnitude lower than SiO/sub 2/. In addition, the LaAlO/sub 3//SC-GOI n-MOSFET with a metal-like fully NiSi:Hf gate has high peak electron mobility of 398 cm/sup 2//Vs and 1.7 times higher than LaAlO/sub 3/-Si devices.  相似文献   

5.
Mobility dependence on Si substrate orientations was investigated for HfO/sub 2/ MOSFETs for the first time. High-temperature (600 /spl deg/C) forming gas (FG) annealing (HT-FGA) was applied on the devices on both [100] and [111] substrates to evaluate the mobility for optimal interfacial quality. Using HT-FGA, D/sub it/ of the [111] devices was reduced down below 1 /spl times/ 10/sup 12/ cm/sup -2/V/sup -1/. Similar to SiO/sub 2/ devices, NMOS mobility of the [111] devices was lower than that of the [100] devices at higher effective fields, while it was reversed for PMOSFETs.  相似文献   

6.
Building on a previously presented compact gate capacitance (C/sub g/-V/sub g/) model, a computationally efficient and accurate physically based compact model of gate substrate-injected tunneling current (I/sub g/-V/sub g/) is provided for both ultrathin SiO/sub 2/ and high-dielectric constant (high-/spl kappa/) gate stacks of equivalent oxide thickness (EOT) down to /spl sim/ 1 nm. Direct and Fowler-Nordheim tunneling from multiple discrete subbands in the strong inversion layer are addressed. Subband energies in the presence of wave function penetration into the gate dielectric, charge distributions among the subbands subject to Fermi-Dirac statistics, and the barrier potential are provided from the compact C/sub g/-V/sub g/ model. A modified version of the conventional Wentzel-Kramer-Brillouin approximation allows for the effects of the abrupt material interfaces and nonparabolicities in complex band structures of the individual dielectrics on the tunneling current. This compact model produces simulation results comparable to those obtained via computationally intense self-consistent Poisson-Schro/spl uml/dinger simulators with the same MOS devices structures and material parameters for 1-nm EOTs of SiO/sub 2/ and high-/spl kappa//SiO/sub 2/ gate stacks on (100) Si, respectively. Comparisons to experimental data for MOS devices with metal and polysilicon gates, ultrathin dielectrics of SiO/sub 2/, Si/sub 3/N/sub 4/, and high-/spl kappa/ (e.g., HfO/sub 2/) gate stacks on (100) Si with EOTs down to /spl sim/ 1-nm show excellent agreement.  相似文献   

7.
The device performance and reliability of higher-/spl kappa/ HfTaTiO gate dielectrics have been investigated in this letter. HfTaTiO dielectrics have been reported to have a high-/spl kappa/ value of 56 and acceptable barrier height relative to Si (1.0 eV). Through process optimization, an ultrathin equivalent oxide thickness (EOT) (/spl sim/9 /spl Aring/) has been achieved. HfTaTiO nMOSFET characteristics have been studied as well. The peak mobility of HfTaTiO is 50% higher than that of HfO/sub 2/ and its high field mobility is comparable to that of HfSiON with an intentionally grown SiO/sub 2/ interface, indicative of superior quality of the interface and bulk dielectric. In addition, HfTaTiO dielectric has a reduced stress-induced leakage current (SILC) and improved breakdown voltage compared to HfO/sub 2/ dielectric.  相似文献   

8.
Dielectric relaxation currents in SiO/sub 2//Al/sub 2/O/sub 3/ and SiO/sub 2//HfO/sub 2/ high-/spl kappa/ dielectric stacks are studied in this paper. We studied the thickness dependence, gate voltage polarity dependence and temperature dependence of the relaxation current in high-/spl kappa/ dielectric stacks. It is found that high-/spl kappa/ dielectric stacks show different characteristics than what is expected based on the dielectric material polarization model. By the drain current variation measurement in n-channel MOSFET, we confirm that electron trapping and detrapping in the high-/spl kappa/ dielectric stacks is the cause of the dielectric relaxation current. From substrate injection experiments, it is also concluded that the relaxation current is mainly due to the traps located near the SiO/sub 2//high-/spl kappa/ interface. As the electron trapping induces a serious threshold voltage shift problem, a low trap density at the SiO/sub 2//high-/spl kappa/ interface is a key requirement for high-/spl kappa/ dielectric stack application and reliability in MOS devices.  相似文献   

9.
We investigate for the first time the possibility of integrating chemical vapor deposition (CVD) HfO/sub 2/ into the multiple gate dielectric system-on-a-chip (SoC) process in the range of 6-7 nm, which supports higher voltage (2.5-5 V operation/tolerance). Results show that CVD HfO/sub 2/-SiO/sub 2/ stacked gate dielectric (EOT =6.2 nm) exhibits lower leakage current than that of SiO/sub 2/ (EOT =5.7 nm) by a factor of /spl sim/10/sup 2/, with comparable interface quality (D/sub it//spl sim/1/spl times/10/sup 10/ cm/sup -2/eV/sup -1/). The presence of negative fixed charge is observed in the HfO/sub 2/-SiO/sub 2/ gate stack. In addition, the addition of HfO/sub 2/ on SiO/sub 2/ does not alter the dominant conduction mechanism of Fowler-Nordheim tunneling in the HfO/sub 2/-SiO/sub 2/ gate stack. Furthermore, the HfO/sub 2/-SiO/sub 2/ gate stack shows longer time to breakdown T/sub BD/ than SiO/sub 2/ under constant voltage stress. These results suggest that it may be feasible to use such a gate stack for higher voltage operation in SoC, provided other key requirements such as V/sub t/ stability (charge trapping under stress) can be met and the negative fixed charge eliminated.  相似文献   

10.
Electron and hole mobility in HfO/sub 2//metal gate MOSFETs is deeply studied through low-temperature measurements down to 4.2 K. Original technological splits allow the decorrelation of the different scattering mechanisms. It is found that even when charge trapping is negligible, strong remote coulomb scattering (RCS) due to fixed charges or dipoles causes most of the mobility degradation. The effective charges are found to be located in the HfO/sub 2/ near the SiO/sub 2/ interface within 2 nm. Experimental results are well reproduced by RCS calculation using 7/spl times/10/sup 13/ cm/sup -2/ fixed charges at the HfO/sub 2//SiO/sub 2/ interface. We also discuss the role of remote phonon scattering in such gate stacks. Interactions with surface soft-optical phonon of HfO/sub 2/ are clearly evidenced for a metal gate but remain of second order. All these remote interactions are significant for an interfacial oxide thickness up to 2 nm, over which, these are negligible. Finally, the metal gate (TiN) itself induces a modified surface-roughness term that impacts the low to high effective field mobility even for the SiO/sub 2/ gate dielectric references.  相似文献   

11.
In this letter, we report successful fabrication of germanium n-MOSFETs on lightly doped Ge substrates with a thin HfO/sub 2/ dielectric (equivalent oxide thickness /spl sim/10.8 /spl Aring/) and TaN gate electrode. The highest peak mobility (330 cm/sup 2//V/spl middot/s) and saturated drive current (130 /spl mu/A/sq at V/sub g/--V/sub t/=1.5 V) have been demonstrated for n-channel bulk Ge MOSFETs with an ultrathin dielectric. As compared to Si control devices, 2.5/spl times/ enhancement of peak mobility has been achieved. The poor performance of Ge n-MOSFET devices reported recently and its mechanism have been investigated. Impurity induced structural defects are believed to be responsible for the severe degradation.  相似文献   

12.
Effects of the defects at high-/spl kappa/ dielectric/Si interface on the electrical characteristics of MOS devices are important issues. To study these issues, a low defect (denuded zone) at Si surface was formed by a high-temperature annealing in hydrogen atmosphere in this paper. Our results reveal that HfO/sub x/N/sub y/ demonstrates significant improvement on the electrical properties of MOS devices due to its low amount of the interstitial oxygen [O/sub i/] and the crystal-originated particles defects as well as small surface roughness at HfO/sub x/N/sub y//Si interface. The current-conduction mechanism of the HfO/sub x/N/sub y/ film at the low- and high-electrical field and high-temperature (T>100/spl deg/C) is dominated by Schottky emission and Frenkel-Poole (FP) emission, respectively. The trap energy level involved in FP conduction was estimated to be around 0.5eV. Reduced gate leakage current, stress-induced leakage current and defect generation rate, attributable to the reduction of defects at HfO/sub x/N/sub y//Si interface, were observed for devices with denuded zone. The variable rise and fall time bipolar-pulse-induced current technique was used to determine the energy distribution of interface trap density (D/sub it/). The results exhibit that relatively low D/sub it/ can be attributed to the reduction of defects at Si surface. By using denuded zone at the Si surface, HfO/sub x/N/sub y/ has demonstrated significant improvement on electrical properties as compared to SiO/sub x/N/sub y/.  相似文献   

13.
Compressively strained Si/sub 0.7/Ge/sub 0.3/ surface-channel pMOSFETs with atomic layer deposition (ALD) Al/sub 2/O/sub 3//HfO/sub 2//Al/sub 2/O/sub 3/ nanolaminate and low-pressure chemical vapor deposition p/sup +/ poly-SiGe gate electrode were fabricated. Surface treatment with either hydrogen fluoride (HF) clean, or HF clean followed by water rinse was performed prior to the ALD processing. The devices with water rinse show a good control of interfacial layer and device reproducibility, while the devices without water rinse lack a clearly observable interfacial layer and show scattered electrical characteristics and distorted mobility curve. A /spl sim/20% increase in hole mobility compared to the Si universal mobility and a /spl sim/0.6-nm-thick continuous interfacial layer are obtained for the pMOSFETs with water rinse.  相似文献   

14.
The impact of the interfacial layer thickness on the low-frequency (LF) noise (1/f noise) behavior of n- and p-channel MOSFETs with high-/spl kappa/ gate dielectrics and metal gates is investigated. Decreasing the interfacial layer thickness from 0.8 to 0.4 nm affects the 1/f noise in two ways. 1) The mobility fluctuations mechanism becomes the main source of 1/f noise not only on pMOS devices, as usually observed, but also on nMOS devices. 2) A significant increase of the Hooge's parameter is observed for both types of MOSFETs. These experimental findings indicate that bringing the high-/spl kappa/ layer closer to the Si-SiO/sub 2/ interface enhances the 1/f noise mainly due to mobility fluctuations.  相似文献   

15.
High-/spl kappa/ Al/sub 2/O/sub 3//Ge-on-insulator (GOI) n- and p-MOSFETs with fully silicided NiSi and germanided NiGe dual gates were fabricated. At 1.7-nm equivalent-oxide-thickness (EOT), the Al/sub 2/O/sub 3/-GOI with metal-like NiSi and NiGe gates has comparable gate leakage current with Al/sub 2/O/sub 3/-Si MOSFETs. Additionally, Al/sub 2/O/sub 3/-GOI C-MOSFETs with fully NiSi and NiGe gates show 1.94 and 1.98 times higher electron and hole mobility, respectively, than Al/sub 2/O/sub 3/-Si devices, because the electron and hole effective masses of Ge are lower than those of Si. The process with maximum 500/spl deg/C rapid thermal annealing (RTA) is ideal for integrating metallic gates with high-/spl kappa/ to minimize interfacial reactions and crystallization of the high-/spl kappa/ material, and oxygen penetration in high-/spl kappa/ MOSFETs.  相似文献   

16.
We have demonstrated the advantages of silicon interlayer passivation on germanium MOS devices, with CVD HfO/sub 2/ as the high-/spl kappa/ dielectric and PVD TaN as the gate electrode. A silicon interlayer between a germanium substrate and a high-/spl kappa/ dielectric, deposited using SiH/sub 4/ gas at 580/spl deg/C, significantly improved the electrical characteristics of germanium devices in terms of low D/sub it/ (7/spl times/10/sup 10//cm/sup 2/-eV), less C- V hysteresis and frequency dispersion. Low leakage current density of 5/spl times/10/sup -7/ A/cm/sup 2/ at 1 V bias with EOT of 12.4 /spl Aring/ was achieved. Post-metallization annealing caused continuing V/sub fb/ positive shift and J/sub g/ increase with increased annealing temperature, which was possibly attributed to Ge diffusion into the dielectric during annealing.  相似文献   

17.
For nMOS devices with HfO/sub 2/, a metal gate with a very low workfunction is necessary. In this letter, the effective workfunction (/spl Phi//sub m,eff/) values of ScN/sub x/ gates on both SiO/sub 2/ and atomic layer deposited (ALD) HfO/sub 2/ are evaluated. The ScN/sub x//SiO/sub 2/ samples have a wide range of /spl Phi//sub m,eff/ values from /spl sim/ 3.9 to /spl sim/ 4.7 eV, and nMOS-compatible /spl Phi//sub m,eff/ values can be obtained. However, the ScN/sub x/ gates on conventional post deposition-annealed HfO/sub 2/ show a relatively narrow range of /spl Phi//sub m,eff/ values from /spl sim/ 4.5 to /spl sim/ 4.8 eV, and nMOS-compatible /spl Phi//sub m,eff/ values cannot be obtained due to the Fermi-level pinning (FLP) effect. Using high-pressure wet post deposition annealing, we could dramatically reduce the extrinsic FLP. The /spl Phi//sub m,eff/ value of /spl sim/ 4.2 eV was obtained for the ScN/sub x/ gate on the wet-treated HfO/sub 2/. Therefore, ScN/sub x/ metal gate is a good candidate for nMOS devices with ALD HfO/sub 2/.  相似文献   

18.
We report investigations of Si face 4H-SiC MOSFETs with aluminum (Al) ion-implanted gate channels. High-quality SiO/sub 2/-SiC interfaces are obtained both when the gate oxide is grown on p-type epitaxial material and when grown on ion-implanted regions. A peak field-effect mobility of 170 cm/sup 2//V/spl middot/s is extracted from transistors with epitaxially grown channel region of doping 5/spl times/10/sup 15/ cm/sup -3/. Transistors with implanted gate channels with an Al concentration of 1/spl times/10/sup 17/ cm/sup -3/ exhibit peak field-effect mobility of 100 cm/sup 2//V/spl middot/s, while the mobility is 51 cm/sup 2//V/spl middot/s for an Al concentration of 5/spl times/10/sup 17/ cm/sup -3/. The mobility reduction with increasing acceptor density follows the same functional relationship as in n-channel Si MOSFETs.  相似文献   

19.
We demonstrate a high-performance metal-high /spl kappa/ insulator-metal (MIM) capacitor integrated with a Cu/low-/spl kappa/ backend interconnection. The high-/spl kappa/ used was laminated HfO/sub 2/-Al/sub 2/O/sub 3/ with effective /spl kappa/ /spl sim/19 and the low-/spl kappa/ dielectric used was Black Diamond with /spl kappa/ /spl sim/2.9. The MIM capacitor (/spl sim/13.4 fF//spl mu/m/sup 2/) achieved a Q-factor /spl sim/53 at 2.5 GHz and 11.7 pF. The resonant frequency f/sub r/ was 21% higher in comparison to an equivalently integrated Si/sub 3/N/sub 4/-MIM capacitor (/spl sim/0.93 fF//spl mu/m/sup 2/) having similar capacitance 11.2 pF. The impacts of high-/spl kappa/ insulator and low-/spl kappa/ interconnect dielectric on the mechanism for resonant frequency improvement are distinguished using equivalent circuit analysis. This letter suggests that integrated high-/spl kappa/ MIM could be a promising alternative capacitor structure for future high-performance RF applications.  相似文献   

20.
A gate-first self-aligned Ge n-channel MOSFET (nMOSFET) with chemical vapor deposited (CVD) high-/spl kappa/ gate dielectric HfO/sub 2/ was demonstrated. By tuning the thickness of the ultrathin silicon-passivation layer on top of the germanium, it is found that increasing the silicon thickness helps to reduce the hysteresis, fixed charge in the gate dielectric, and interface trap density at the oxide/semiconductor interface. About 61% improvement in peak electron mobility of the Ge nMOSFET with a thick silicon-passivation layer over the CVD HfO/sub 2//Si system was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号