首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to determine whether brief focal ischemia induces ischemic tolerance in rat brain. Focal ischemia was produced in Wistar rats by occluding the middle cerebral artery (MCA) for 20 min at a distal site. Following recovery for 24 h, the animals were subjected to a 10-min episode of forebrain ischemia using a combination of bilateral carotid artery occlusion and systemic hypotension. Histologic injury, assessed after a survival period of 3-4 days, consisted of selective neuronal necrosis bilaterally in cerebral cortex, striatum, hippocampus, and thalamus superimposed upon a small cortical infarct adjacent to the site of MCA occlusion. However, the intensity of neuronal necrosis in the MCA territory of the neocortex ipsilateral to MCA occlusion was markedly less than that in the contralateral MCA cortex. In contrast, the extent of neuronal necrosis in subcortical structures was similar in both hemispheres. Unexpectedly, animals in which the MCA was manipulated, but not occluded, also exhibited a marked reduction of neuronal necrosis in the ipsilateral MCA neocortex following forebrain ischemia. However, in animals with craniotomy alone, forebrain ischemia caused a similar extent of neuronal necrosis in the MCA neocortex of both hemispheres. Transient occlusion of the MCA induced the focal expression of the 72-kDa heat-shock protein (hsp72) in the MCA territory of the neocortex. Limited expression of hsp72 was also detected following sham occlusion, but not after craniotomy alone. These results demonstrate focal induction of ischemic tolerance in rat neocortex that may be related to expression of heat-shock proteins.  相似文献   

2.
Specific, high-affinity angiotensin II (A II) receptors were observed on granulosa and thecal cells of preovulatory ovarian follicles from immature PMSG-treated rabbits. Scatchard analysis of 125I-[Sar1,Ile8]A II binding to freshly prepared cells was indicative of only one class of binding sites. Kd values were 0.26 +/- 0.11 nM and 0.18 +/- 0.02 nM, densities of A II receptors were 0.06 +/- 0.02 fmol/10(5) cells and 0.08 +/- 0.01 fmol/10(5) cells for granulosa and thecal cells, respectively. When cells were incubated for 48 h with hCG, Kd values were of the same order of magnitude, but the amount of A II receptors was increased 2-fold in granulosa and 4-fold in theca. Using subtype specific ligands (Losartan for AT1 and PD 123319 for AT2) in competitive binding experiments, A II receptors were found to be of the AT1 type on both granulosa and thecal cells freshly prepared or incubated 48 h in vitro. These results establishing the existence of high affinity AT1 receptors on the two cell types of the rabbit preovulatory follicles contrast with previous observations showing the presence of AT2 receptors on granulosa or theca from several species.  相似文献   

3.
Temporary arterial occlusion has been routinely used as an adjunct in intracranial aneurysm surgery. This has commonly been performed using a protocol of multiple short periods of occlusion alternating with periods of restoration of normal circulation. Recently, the logical basis of this method has come under scrutiny. There is extensive experimental evidence to suggest that repetitive, brief periods of global ischemia may cause more severe cerebral injury than an equivalent single period of global ischemia. Only recently has this issue begun to be addressed with regard to focal ischemia. Hence, despite the common use of temporary clipping, little experimental data are available regarding the ischemic consequences of temporary arterial occlusion with periods of reperfusion versus uninterrupted temporary occlusion. To investigate this issue, a protocol of occlusion/reperfusion that simulates the temporal profile that occurs during surgery was performed in a rat model of focal ischemia. Sixteen anesthetized Sprague-Dawley rats were divided into two groups. The animals in Group I underwent 60 minutes of uninterrupted middle cerebral artery occlusion and the animals in Group II were subjected to six separate 10-minute occlusion periods with 5 minutes of reperfusion between occlusions. Histopathological analysis was performed 72 hours postischemia. Group I had significantly increased mean infarction volumes (50.0 +/- 12.1 mm3) compared to Group II (8.7 +/- 3.1 mm3) (p = 0.008). Injuries in Group I occurred in both the cortex and striatum, whereas Group II showed only striatal injuries. Furthermore, the extent of the injuries in Group II was less severe, characterized by ischemic neuronal injury rather than frank infarction. The results indicate that intermittent reperfusion is neuroprotective during temporary focal ischemia and support the hypothesis that intermittent reperfusion is beneficial if temporary clipping is required during aneurysm repair.  相似文献   

4.
Oxygen free radicals and nitric oxide (NO.) have been proposed to be involved in acute CNS injury produced by cerebral ischemia; however, controversy remains regarding how they cause injury. Because superoxide generation is triggered during reperfusion, the cytotoxic oxidant peroxynitrite could be formed, but it is not known if this occurs. Dot blot and immunohistochemistry studies were performed on the magnitude and time course of tyrosine nitration and inducible NO synthase (NOS2) in the postischemic rat pup brain. Neonatal ischemia was induced by permanent left middle cerebral artery occlusion in association with 1-h occlusion of the left common carotid artery in 7-day-old Wistar pups. Nitrotyrosine (NT) immunoreactivity was evident in the blood vessels close to the cortical infarct at 48-72 h of recovery, and T lymphocytes were involved with this production. NOS2 immunoreactivity was seen in neutrophils in the same vessels and in the parenchyma at 72 h of recirculation. Whereas NT staining decreased with time, NOS2-positive neutrophils could be still detected in arachnoid vessels at 14 days of recirculation. We conclude that perivascular reactions mediated by peroxynitrite are important in the cascade of events that lead to brain oxidative stress in neonatal ischemia. Moreover, NO-related species may serve as a signaling function instead of directly mediating toxicity.  相似文献   

5.
To better understand genetic diversity of mammalian reoviruses, we studied sequence variability in the S3 gene segment of 17 field-isolate reovirus strains and prototype strains of the three reovirus serotypes. Strains studied were isolated over a 37-year period from different mammalian hosts and geographic locations. A high degree of variability was observed in the nucleotide sequences of the S3 gene, whereas the deduced amino acid sequences of the S3 gene product, sigma NS, were highly conserved. When variability among the S3 nucleotide sequences was analyzed using pairwise comparisons, we found that 5' and 3' noncoding regions were significantly more conserved than the remainder of the gene. This high degree of sequence conservation was also observed within the first 15 nucleotides of the 5' coding region. Phylogenetic analyses showed that multiple alleles of the S3 gene cocirculate and that genetic diversity in the S3 gene does not correlate with host species, geographic locale, or date of isolation. Phylogenetic trees constructed from variation in the S3 sequences are distinct from those previously generated from sequences that encode attachment protein sigma 1, core protein sigma 2, and outer capsid protein sigma 3, which supports the hypothesis that reovirus gene segments reassort in nature. These findings suggest that reovirus gene segments are well-adapted to mammalian hosts and that reovirus evolution has reached an equilibrium.  相似文献   

6.
JP Holland  SG Sydserff  WA Taylor  BA Bell 《Canadian Metallurgical Quarterly》1994,25(10):2055-8; discussion 2058-9
BACKGROUND AND PURPOSE: Calcitonin gene-related peptide is an endogenous vasodilating neuropeptide with a dense concentration in the trigeminocerebrovascular system. It is hypothesized that depletion of this peptide contributes to delayed cerebral ischemia after subarachnoid hemorrhage and that an exogenous supply of calcitonin gene-related peptide will augment ischemic cerebral blood flow and reduce neuronal injury. METHODS: In this study we have investigated the effect of an intravenous infusion of calcitonin gene-related peptide (100 ng/kg per minute), started 1 hour before and continued throughout 4 hours of focal cerebral ischemia, on cerebral blood flow and the volume of brain injury in a rat model of middle cerebral artery occlusion. RESULTS: Calcitonin gene-related peptide produces a significant improvement in ischemic cerebral blood flow (32 +/- 2 compared with 13 +/- 2 mL/100 g per minute in the controls; t = 6.92, P < .0001) with a concomitant reduction in the volume of ischemic brain injury (102 +/- 22 compared with 234 +/- 19 mm3; t = 4.47, P < .001). CONCLUSIONS: These findings lend support for the potential use of this peptide in the prophylactic treatment of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.  相似文献   

7.
The objective of this study was to establish whether tissues that are energy compromised, but not energy depleted, demonstrate exaggerated calcium transients when subjected to membrane depolarizations of the spreading depression (SD) type. Anesthetized and artificially ventilated rats were given insulin in order to induce progressively lower plasma glucose concentrations. Spreading depression was elicited by local application of KCl; extracellular calcium concentration (Ca2+e) as well as direct current (DC) potential were recorded. When plasma glucose concentration fell below approximately 3 mM, the duration of the Ca2+e transient gradually increased to values exceeding 500% of control. The increase was associated with a corresponding increase in the duration of the DC potential shift, but the amplitude of the Ca2+e transient did not change. It is concluded that a restriction of glucose (or oxygen) supply, as occurs in hypoglycemia (or hypoxia), prolongs the calcium transient associated with depolarization of the SD type, even though tissue phosphocreatinine and ATP concentrations are normal. The results support the contention that repeated depolarizations, occurring in the penumbral zone of a focal ischemic lesion, could lead to calcium-related damage.  相似文献   

8.
The study was undertaken to determine if the levels of vesicular zinc in neuronal terminals would decrease in response to focal brain ischemia. The middle cerebral artery was occluded distal to the striatal branches in male spontaneously hypertensive rats. At 7, 15, 30, 45, 60, 90, 120 min; 3, 6, 12, 24, 48 h and 7 days later the animals were sacrificed and the brains were stained for zinc-sulfides, cell bodies and AChE-positive cholinergic fibers. The density of zinc positive terminals significantly decreased in the neocortical ischemic zone 7 min after middle cerebral artery occlusion (MCAO). In the neocortical layers II and III most zinc positive neuronal terminals disappeared at 7 min after MCAO whereas the zinc positive terminals in layers V and VI remained positive at least 2 h. Beginning at 1 h after MCAO and progressing to 24 h a significant decrease in the density of zinc positive terminals was observed in the dorsolateral striatum, and ventrobasal thalamic nucleus, both major projection areas of the sensorimotor cortex. The disappearance of zinc positive neuronal terminals in the ischemic neocortex and related areas, is most likely due to a neuronal release of vesicular zinc in response to hypoxia. The high extracellular concentration of zinc is thought to be both neuroprotective by blocking the NMDA receptor and neurotoxic by activating neuronal influx of Ca2+ through voltage gated calcium channels. It seems evident that the latter effect of zinc is contributing to the neuronal death in focal brain ischemia.  相似文献   

9.
The receptor encoded by the W (c-kit) locus is expressed on the membrane of mouse primordial germ cells, whereas its ligand termed stem cell factor (SCF), encoded by the Sl locus, is expressed on the membrane of somatic cells associated with both the primordial germ cell migratory pathways and homing sites. Using an in vitro short time assay which allows a quantitative measure of adhesion between cells, in the present paper we show that SCF/c-kit interaction can modulate primordial germ cell adhesion to somatic cells. We report that the adhesiveness of 11.5 dpc primordial germ cells to four types of somatic cells in culture (TM4 cells, STO fibroblasts, bone marrow stromal cells and gonadal somatic cells) is significantly reduced by antibodies directed against c-kit receptor or SCF, as well by soluble SCF. This SCF/c-kit mediated adhesion seems independent of SCF-induced tyrosine autophosphorylation of c-kit receptor. Moreover, primordial germ cells showed a poor ability to adhere to a bone marrow stromal cell line carrying the Sl(d) mutation (unable to synthesize membrane-bound SCF). This adhesiveness was not further impaired by anti-c-kit antibody. These results demonstrate that SCF/c-kit interaction contributes to the adhesion of primordial germ cells to somatic cells in culture and suggest that the role played by SCF in promoting survival, proliferation and migration of these cells in vitro and in vivo, demonstrated by several studies, might depend on the ability of the membrane-bound form of this cytokine to directly mediate primordial germ cell adhesion to the surrounding somatic cells.  相似文献   

10.
The ergoline derivative, LEK-8829 (9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylerg oline), has been proposed as a potential atypical antipsychotic drug with antagonistic actions at dopamine D2 and serotonin 5-HT2 and 5-HT1A receptors (Krisch et al., 1994, 1996). LEK-8829 also induces contralateral turning in rats with 6-hydroxydopamine-induced unilateral lesion of dopamine nigrostriatal neurons. Turning is blocked by SCH-23390 (R(+)-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzaze pine), a dopamine D1 receptor antagonist. It has been suggested that LEK-8829 could have beneficial effects in parkinsonian patients suffering from psychotic episodes induced as a side-effect of antiparkinsonian treatment with dopamine D2 receptor agonists. Therefore, we now investigated the interaction of LEK-8829 with the dopamine D2 receptor agonist bromocriptine (2-bromo-alpha-ergokryptine) in 6-hydroxydopamine-lesioned rats. Treatment with either LEK-8829 (3 mg kg(-1)) or bromocriptine (3 mg kg(-1)) induced a vigorous contralateral turning response. The cumulated number of turns induced by the treatment with both drugs combined was not significantly different from the cumulated number of turns induced by single-drug treatment. The pretreatment with SCH-23390 (1 mg kg(-1)) did not have a significant effect on the bromocriptine-induced turning but significantly decreased the turning observed after the combined LEK-8829/bromocriptine treatment. We conclude that in the 6-hydroxydopamine model, the turning behaviour mediated by the LEK-8829/bromocriptine combination may be the result of opposing activity of both drugs at dopamine D2 receptors with concomitant stimulation of dopamine D1 receptors by LEK-8829. Therefore, LEK-8829 may have a potential for the therapy of parkinsonism complicated by dopamine D2 receptor agonist drug-induced psychosis.  相似文献   

11.
The susceptibility of axons to blunt head injury is well established. However, axonal injury following cerebral ischemia has attracted less attention than damage in gray matter. We have employed immunocytochemical methods to assess the vulnerability of axons to cerebral ischemia in vivo. Immunocytochemistry was performed using antibodies to a synaptosomal-associated protein of 25 kDa (SNAP25), which is transported by fast anterograde transport; the 68-kDa neurofilament subunit (NF68kD); and microtubule-associated protein 5 (MAP5) on sections from rats subjected to 30 min and 1, 2, and 4 h of ischemia induced by permanent middle cerebral artery (MCA) occlusion. After 4 h of occlusion, there was increased SNAP25 immunoreactivity, which was bulbous in appearance, reminiscent of the axonal swellings that occur following blunt head injury. Increased SNAP25 immunoreactivity was present in circumscribed zones in the subcortical white matter and in the axonal tracts at the border of infarction, a pattern similar to that previously described for amyloid precursor protein. Although less marked, similar changes in immunoreactivity in axons were evident following 2 h of ischemia. MAP5 and NF68kD had striking changes in immunoreactivity in axonal tracts permeating the caudate nucleus within the MCA territory at 4 h. The appearance was roughened and disorganized compared with the smooth regular staining in axons within the nonischemic areas. Profiles reminiscent of axonal bulbs were evident in MAP5-stained sections. The changes seen with NF68kD and MAP5 were also evident at 2 h but were more subtle at 1 h. There were no changes in axonal immunoreactivity with SNAP25 or NF68kD at 30 min after MCA occlusion. Altered immunoreactivity following ischemia using SNAP25, MAP5, and NF68kD provides further evidence for the progressive breakdown of the axonal cytoskeleton following an ischemic insult. NF68kD and MAP5 appear to be sensitive markers of the structural disruption of the cytoskeleton, which precedes the subsequent accumulation of SNAP25 within the damaged axons. Axonal cytoskeletal breakdown and disruption of fast axonal transport, which are well-recognized features of traumatic brain injury, are also sequalae of an ischemic insult.  相似文献   

12.
To investigate the role of superoxide in the toxicity of nitric oxide (NO), we examined the effect of nitric oxide synthase (NOS) inhibition on brain infarction in transgenic mice overexpressing CuZn-superoxide dismutase (SOD-1). Male SOD-transgenic mice and non-transgenic littermates (30-35 g) were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Either NG-nitro-L-arginine methyl ester (L-NAME; 3 mg/kg), a mixed neuronal and endothelial NOS inhibitor, or 7-nitroindazole (7-NI; 25 mg/kg), a selective neuronal NOS inhibitor, was administered intraperitoneally 5 min after the onset of ischemia. At 24 h of reperfusion, the mice were decapitated and the infarct volume was evaluated in each group. In the nontransgenic mice, L-NAME significantly increased the infarct volume as compared with the vehicle, while 7-NI significantly decreased it. In the SOD-transgenic mice, L-NAME-treated animals showed a significantly larger infarct volume than vehicle-treated ones, whereas there were no significant differences between 7-NI- and vehicle-treated mice. Our findings suggest that selective inhibition of neuronal NOS ameliorates ischemic brain injury and that both neuronal and endothelial NOS inhibition may result in the deterioration of ischemic injury due to vasoconstriction of the brain. Since L-NAME increased infarct volume even in SOD-transgenic mice, the protective effect of SOD could result from the vasodilation by increased endothelial NO as well as the reduction of neuronal injury due to less production of peroxynitrite compared to wild-type mice. Moreover, the neurotoxic role of NO might not be dependent on NO itself, but the reaction with superoxide to form peroxynitrite, because of no additive effects of SOD and a neuronal NOS inhibitor.  相似文献   

13.
We studied the auditory neurons in the optic tectum of the unanesthetized pigeon, using single-unit recordings and acoustic free-field stimulation. Most units showed spatial tuning, with best areas located in the contralateral hemifield. All units responded also to visual stimuli, the auditory best areas being in rough alignment with visual receptive fields.  相似文献   

14.
Previous studies have shown that most of the energy consumption of CNS tissue is used for processes that subserve signaling functions of the cells. Since these function-related processes are probably not essential to cell viability, blocking them reversibly with a combination of pharmacologic agents should protect cells from a reduction in energy metabolism. Preliminary experiments to test this hypothesis were performed on isolated rabbit retinas. They were maintained in a newly devised chamber that permitted continuous monitoring of electrophysiological function for > or = 8 h. Ischemia was simulated by a 6-fold reduction in both O2 and glucose. This caused a rapid (t1/2 75 s) and complete loss of the light-evoked response in the optic nerve. Untreated retinas showed full recovery after 1/2 h of deprivation, but only 50% recovery after 1 h and little or no recovery after 2 or 3 h. Retinas exposed during 3 h of deprivation to a combination of six agents that abolished electrophysiologic function and reduced glucose utilization [tetrodotoxin (TTX), 2-amino-4-phosphonobutyric acid (APB), 2-amino-5-phosphonovaleric acid (APV), amiloride, Mg2+, and Li+] showed full recovery. We conclude that reducing energy requirements by blocking functional processes can prevent ischemic damage.  相似文献   

15.
OBJECTIVES: We studied the triggering mechanism for neurally mediated syncope. BACKGROUND: Although increased transient sympathetic tone is thought to be necessary for the development of neurally mediated syncope, little is known about the triggering mechanism for neurally mediated syncope. METHODS: Plasma epinephrine (EP) and norepinephrine (NE) levels were assessed in 20 syncope patients during tilt test (80 degrees, 15 min) with and without isoproterenol (ISP, 0.01, 0.02 microg/kg/min). If syncope occurred, propranolol (0.1 mg/kg) was injected. RESULTS: Eight patients experienced syncope during tilting alone, and 9 patients required ISP for syncope. In the negative response without ISP, NE showed a small statistical 1.7-fold increase at end of tilting and EP did not change during tilting. When syncope occurred during tilting alone, a significant 11.7-fold increase in EP at syncope was registered concomitant with a small 2.5-fold increase in NE. When patients experienced syncope during tilting with ISP, a significant 5.0-fold increase in EP at syncope was registered concomitant with a small 1.7-fold increase in NE. In patients without ISP, propranolol did not interrupt syncope. In patients with ISP, six of eight receiving propranolol responded to tilting negatively. CONCLUSIONS: An increase of NE levels may result in inhibition of syncope and an EP surge may be a triggering mechanism for neurally mediated syncope. Comparatively low levels of EP may be enough to induce syncope during tilting with ISP compared with tilting alone. Propranolol is not effective in patients without ISP, but it frequently inhibits syncope in patients with ISP. Propranolol (0.1 mg/kg) may be insufficient to block the actions of high levels of circulating EP.  相似文献   

16.
17.
Diffusion-weighted (DW) and gradient echo (GE) magnetic resonance images were acquired before and after occlusion of the middle cerebral artery (MCA) in the rat. Upon occlusion, an increase in DW imaging signal intensity was observed in a core area within the MCA territory, most likely reflecting cytotoxic edema. The signal from GE images, which is sensitive to changes in the absolute amount of deoxyhemoglobin, decreased following ischemia within a region that extended beyond the core area observed with DW imaging. This hypointensity is attributed to increases in blood volume and/or oxygen extraction fraction, which result from a decrease in perfusion pressure in the collaterally perfused area. The evolution of the GE imaging signal intensity from different regions was studied for 3.5 h following the occlusion. In the core area, the GE imaging signal returned towards baseline values after approximately 1-2 h, while it remained stable in the surrounding area. This feature may reflect a decrease in hematocrit due to microcirculatory defect and/or a decrease in the oxygen extraction fraction due to ongoing infarction of the tissue and may indicate that tissue recovery is severely compromised. The combined use of DW and GE imaging offers great promise for the noninvasive identification of specific pathological events with high spatial resolution.  相似文献   

18.
The early development of focal ischemia after permanent occlusion of the right middle cerebral artery (MCA) was studied in six rats using interleaved measurements by diffusion-weighted NMR imaging (DWI) of water and two variants of proton spectroscopic imaging (SI), multiecho SI (TE: 136, 272, 408 ms) and short TE SI (TE: 20 ms). Measurements on a 4.7-T NMR imaging system were performed between the control phase and approximately 6 h postocclusion. In the center of the ischemic lesion of all rats, the apparent diffusion coefficient (ADC) decreased rapidly to 84.4 +/- 4.2% (mean +/- SD) of the control values approximately 2 min postocclusion. Approximately 6 h postocclusion, the ADC was reduced to 67.1 +/- 5.9%. In contrast, large differences between the animals were observed for the temporal increase of lactate (Lac) in the ipsilateral hemisphere. The maximum Lac signal was reached in four rats after 0.5-1.5 h, and in two rats was not reached even after 6 h postocclusion. Six h postocclusion, SI spectra measured at a TE of 136 ms revealed a decrease in the CH3 signal of N-acetylaspartate (NAA) to 67 +/- 13% of the control values. Differences were observed between the spatial regions of decreased NAA and increased Lac. In the lesions, a T2 relaxation time of Lac of 292 +/- 40 ms, considering a J-coupling constant of 6.9 Hz, was measured. Furthermore, a prolongation of the T2 of the CH3 signal of creatine/phosphocreatine (Cr/PCr) was observed in the lesion, from 163 +/- 22 ms during control to 211 +/- 41 ms approximately 6 h postocclusion. The experiments proved that DWI and proton SI are valuable tools to provide complementary information on processes associated with brain infarcts.  相似文献   

19.
The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.  相似文献   

20.
Using a dialysis electrode, we recently developed an oxygen-independent system for real-time measurement of the glutamate concentration in the extracellular space ([Glu]e) during ischemia. This system allows separate evaluation of intra-ischemic biphase [Glu]e elevation, i.e. release from synaptic vesicles (1st phase), reversed uptake of glutamate from metabolic pools in neuronal cells (2nd phase), and post-ischemic glutamate re-uptake in ischemia-reperfusion models. Using the system, we attempted to clarify the relationship between biphase glutamate release and brain temperature in a model of acute global ischemia produced by transecting both carotid arteries. Our results showed that, in contrast to mild hyperthermia, hypothermia did not inhibit the 1st phase of [Glu]e release, and changes in intra-ischemic brain temperature had a minimal effect on the 2nd phase of [Glu]e elevation during severe acute ischemia. These findings, together with our previous data, indicate that brain temperature change in the intra-ischemic period plays an important role in disturbance of the glutamate re-uptake system during ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号