首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short circuit and ground failures that are quite common in power transmission lines are investigated. These failures are designed considering a system that is supplied by this wind system, and analyses are interpreted. In the study, a system is set up and it is fed by the wind turbine. Furthermore, the mathematical model of wind turbine and generator is prepared and the results obtained from the simulation are evaluated. The short circuit and ground fault analyzes were performed separately for each of the three phases. ATP (alternative transient program)-EMTP (electromagnetic transients program) program is used in the analysis and the results obtained were found to be quite compatible.  相似文献   

2.
The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.  相似文献   

3.
Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.  相似文献   

4.
The results of a net energy life cycle analysis and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant operating with a 70% corn silage and 30% cow dung feedstock mixture are presented after its initial five years of operation. A ratio of 8.0 for the total output electrical energy divided by the total input energy from fossil fuels is found. A net efficiency of 1.2% of converting solar energy into electricity and usable heat (0.6% electricity) is achieved. Only 16 g CO2 per kWh are generated in the process. If all greenhouse gases are considered, this process even actively reduces the total greenhouse gas load on the atmosphere. In terms of producing transportation biofuels, this process provides 3.8 times more yield per hectare than bioethanol generation.  相似文献   

5.
The counter-rotating type tidal range power unit composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures is proposed to utilize effectively the tidal range. In the unit, the front and the rear runners counter-drive the inner and the outer armatures of the generator, respectively. Besides, the flow runs in the axial direction at the rear runner outlet while the flow has not the swirling component at the front runner inlet, because the angular momentum change through the rear runner must coincides with that through the front runner. Such operations are suitable for bidirectional flows, namely working at the seashore with the rising and the falling tidal ranges, and the unit may be able to take place of the traditional bulb type turbines. To promote more the tidal power generation by this type unit, the runners were modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable and take the optimum efficiency at the on-cam operation, while the trailing profiles of the runner blades determine mainly the theoretical output.  相似文献   

6.
This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.  相似文献   

7.
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.  相似文献   

8.
Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.  相似文献   

9.
CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.  相似文献   

10.
The installation of wind power generators on buildings located in areas with regular winds may be a suitable investment in a renewable power source. Brazil has a high eolic potential, where the annual mean wind speed may reach over eight meters per second. This case study is aimed to assess the economic feasibility of the installation of small wind power plants in urban areas. This work evaluates a project for the installation of a vertical axis wind turbine in three buildings (15-, 22-, and 26-story) including the following stages: (1) installation of a real-time power meter in the 15-store unit; (2) demand analysis of the 26-store building's power consumption; (3) winds survey along the coast of the State of Ceara; (4) analysis of the wind turbines available in the market; (5) simulation aimed to choose the system. Vertical wind power generators offer better conditions of use in urban areas. The turnover time was established to be between four and six years in the three studied units. The installation of a wind power generator on buildings in regions with an adequate eolic regimen reaches a financial return of the investment before the end of the equipment's lifespan.  相似文献   

11.
The author's process of cold fusion, was announced to International Conference on Emerging Nuclear Energy Systems in 2007, then exposed to International Conference on Emerging Nuclear Energy Systems in 2009, and has been applied since June, 2007 in a non-member border country of the European Union, for safety reasons, the product, of a large module of 300 cm x 40 cm, using energy of mass of 600 megawatts per hour, and unique waste, 300 cubic meters of pure water a day, instantly drinkable. The presentation which the author shall make, will contain, if it is possible, several demonstrations of a portable module, producing one megawatt per hour, and in waste one cubic meter of water per day: the authors are able to stop the module at any time. The civil applications of this process, the author developed in the articles published on the site of the European Scientific Parliament 2010, and diverse modules were the object of a protocol signed by large Asian country.  相似文献   

12.
Fuel cell is an important promised source of clean renewable energy that is being under extensive scientific investigation and developments. One important type of fuel cells is PEM (proton exchange membrane fuel cell), which is considered in this study. Specifically, this study aimed at building-up of mathematical computerized model to simulate the stages of PEM fuel cell and to investigate the effects of cell design and operation parameters on its general performance. These include membrane thickness, cell area, hydrogen pressure and ionic current density. One-dimensional model has been introduced and appealed to analyze the effects of PEM fuel cell parameters on its overall performance. The results demonstrate that the cell power (and electrical efficiency) reduces as the thickness of cell membrane gets larger. Moreover, the peak point of cell power gets its maximum value at membrane thickness of 0.005 cm and its minimum value at 0.05 cm. However, the optimum value for ionic current density to get relative high cell power and electrical efficiency is equal 0.81 A/cm^2. These findings enhance research efforts toward new design and materials of PEM fuel cell.  相似文献   

13.
Inline characterization for fabrication of silicon wafer PV (photovoltaic) devices may be used to optimize device efficiencies, reduce their performance variance, and their cost of production. In this article, the frozen in strain from a variety of extended defects in silicon is shown to effect the polarization of light transmitted through a silicon substrate due to the photo-elastic effect. Transmission polarimetry on pre-fabricated silicon substrates may be used for identification of extended defects in the materials using a polarization analysis instrument. Instrumentation is proposed for detection of defects in raw silicon wafers for applications like raw silicon wafer sorting, scanning silicon bricks, and inline inspection prior to solar cell metallization. Such analysis may assist with gettering of silicon solar cells, may be implemented in the sorting and rejection procedures in PV device fabrication, and in general shows advantages for detection of defects in silicon wafer solar cell materials and devices.  相似文献   

14.
PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticity. The objective of this study is to investigate potential of concurrent optimization of fuel efficiency and driving performance. For the studies, a backward vehicle model for a parallel PHEV was designed, where the power flow is calculated from the wheels to the propulsion units, the conventional ICE (internal combustion engine) and the EMG (electric motor/generator) unit. The hybrid drive train is according to a P2 layout, consequently the EMG is situated between the shifting clutch and the ICE. The implemented operation strategy distributes the power to both propulsion units depending on the vehicle speed, requested driving torque, the battery's SOC (state of charge) and SOP (state of power). Additional information, such as the slope of the road, can be taken into account by the operation strategy. In the paper, the fuel saving potential as well as the longitudinal dynamics change of different PHEV configurations is presented as a function of battery capacity and EMG power. Consequently, applicable hybrid components can be defined. By using additional information of the environment like various sensor data, road slope amongst others, the fuel saving potential can be improved even more. By studying the dynamic model, the overall results of the backward model are confirmed. In conclusion, this study shows that it is possible to concurrently reduce fuel consumption and increase driving performance in PHEVs. The potential depends strongly on the configuration of the electric components and the implemented operation strategy. Consequently, the hybrid system configuration has to be chosen carefully and aligned to the vehicle performance.  相似文献   

15.
风能水能资源的互补开发、综合利用是一种有效的可再生能源利用方式。通过阐述国际及国内风电发展现状,分析云南电力结构,研究云南风能资源特点,提出在云南建立基于风能水能互补发电的可再生能源体系。  相似文献   

16.
A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.  相似文献   

17.
This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.  相似文献   

18.
The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.  相似文献   

19.
In this article, the authors give an overview of different logistics concepts for operation and maintenance of OWPP (offshore wind power plants). These can be generally classified into onshore based and offshore based concepts. The operation of OWPPs can still be improved as research has shown that the availability of OWPPs is low compared to onshore wind power plants. There are a few tools to calculate operating costs and to evaluate the different concepts. However, most tools have a weak focus on logistics although logistics account for a big share of the costs. The tool the authors are introducing in this article focuses on the logistics processes. It is first explained and then tested with an OWPP scenarin  相似文献   

20.
为了更好地进行能源调配,我国正开始建设坚强智能电网,直流输电控制系统应实现更多系统层的控制功能。智能电网中的直流输电系统的根本控制目标是保障电网整体的自适应和自愈性。为了实现这一目标,需要从直流输电控制的可观测性入手增加控制观测量,引入合理的集控、协调控制理论作为支撑,完善控制输出环节,实现对电网的有效控制。控制的实时性和决策能力是智能化直流输电控制的核心。从可观性、可控性、实时性、自适应性角度分析,提出了面向电网稳定性的多智能体智能化直流输电控制技术框架,为直流输电系统级控制技术的发展提出了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号