首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mineral fertilizer use is increasing in West Africa though little information is available on yield response in farmers' fields. Farmers in this region plant at low density (average 5,000 pockets ha–1, 3 plants pocket–1), which can affect fertilizer use efficiency. A study was conducted with 20 farmers in Niger to assess the response of pearl millet [Pennisetum glaucum (L.) R. Br.] to phosphorus and nitrogen fertilizers under farm conditions. In each field, treatments included control, single superphosphate (SSP) only, SSP plus N (point placed near plant), and either SSP or partially acidulated phosphate rock (PAPR) plus N broadcast. N and P were applied at 30 kg N ha–1 and 30 kg P2O5 ha–1. Farmers were allowed to plant, weed, etc., as they wished and they planted at densities ranging from 2,000 to 12,000 pockets ha–1. In the absence of fertilizer, increasing density from 2,000 to 7,000 pockets ha–1 increased yield by 400%. A strong interaction was found between fertilizer use and density. Farmers planting at densities less than 3,500 pockets ha–1 had average yields of 317 kg grain ha–1 while those planting at densities higher than 6,500 pockets ha–1 showed average yields of 977 grain ha–1. Though phosphate alone increased yields significantly at all densities, little response to fertilizer N was found at densities below 6,000 pockets ha–1. Significant residual responses in 1987 and 1988 were found to P applied in high-density plots in 1986. Depending on fertilizer and grain prices, analysis showed that fertilizer use must be be combined with high plant density (10,000 pockets ha–1) or no economic benefit from fertilizer use will be realized.  相似文献   

2.
Double-labelled15N ammonium nitrate was used to determine the uptake of fertilizer and soil N by ryegrass swards during spring and mid-season. The effects of water stress (40% of mean rainfall v 25 mm irrigation per 25 mm soil water deficit) and the rate of application of N in the spring (40 v 130 kg ha–1) on the recovery of 130 kg N ha–1 applied in mid-season were also evaluated. Apparent recovery of fertilizer N (uptake of N in the fertilized plot minus that in the control expressed as a percentage of the N applied) was 95 and 79% for fertilizer N applied in the spring at rates of 40 and 130 kg ha–1, respectively. Actual recovery of the fertilizer N assessed from the uptake of15N was only 31 and 48%, respectively. The uptake of soil N by the fertilized swards was substantially greater than that by the control. However, the increased uptake of soil N was always less than the amount of fertilizer N retained in or lost from the soil. Broadly similar patterns for the uptake of fertilizer and soil N were observed during mid-season. Uptake of N in mid-season was highest for swards which received 40 kg N ha–1 in the spring and suffered minimal water stress during this period. Application of 130 kg N ha–1 in spring reduced the uptake of N in mid-season to an extent similar to that arising from water stress. Only 1.8 to 4.2 kg ha–1 (3 to 10%) of the N residual from fertilizer applied in the spring was recovered during mid-season. Laboratory incubation studies suggested that only a small part of the increased uptake of soil N by fertilized swards could be attributed to increased mineralisation of soil N induced by addition of fertilizer. It is considered that the increased uptake of soil N is partly real but mostly apparent, the latter arising from microbially mediated exchange of inorganic15N in the soil.  相似文献   

3.
Researches on the mineral nutrition and fertilizer response of grain sorghum (Sorghum bicolor (L) Moench) carried out during the last 25 years in India are reviewed here. In general, N,P,K, Fe and Mn concentrations in vegetative plant parts decreased with crop age, while the concentrations of Ca, Mg and Cu increased. The concentration of N and P increased in panicle or grains of sorghum with advance in crop age. The seasonal change for other nutrients has not, however, been studied.Accumulation and uptake of N,P, and K by grain sorghum were characterized. Usually N and P accumulated slowly compared with the rapid accumulation of K in early crop growth stage and vice-versa in later stages of growth. As against the sizable mass of N and P into panicle, K was partitioned into stalk.Fertilizer responses to N and P were observed throughout India. Improved varieties and hybrids of sorghum responded to N rates ranging from 60 to 150 kg N ha–1, whereas a response to P application was observed up to 40 kg P ha–1. Although responses to K application had been inconsistent, an increase in grain yield of sorghum was observed due to 33 kg K ha–1. A balanced fertilizer schedule consisting of 120 kg N ha–1, 26 kg P ha–1, 33 kg K ha–1 and 15–25 kg Zn504 ha–1 is recommended for improved productivity of grain sorghum.It is concluded that systematic research efforts should be directed so as to identify problem soils showing deficiencies and toxicities of different nutrients. Characterization of the seasonal changes in the concentration and uptake of different nutrients and determination of critical concentration and hidden hunger of different nutrients in plant tissues would lead to the recommendation of balanced fertilization for different sorghum-growing regions in India.A part of the paper presented in the Silver Jubliee Conference of Indian Society of Agronomy held at H.A.U., Hissar (India) in March, 1981  相似文献   

4.
This study consisted of a survey on the nutritional status of rice plants in relation to nutrient application and yield in 70 farmers' fields in four provinces of Bangkok plain during the 1977 wet season. In addition a series of fertilizer experiments were carried out on rice experimental stations in the same provinces to study yield response to N and P fertilization and to develop a fertilizer recommendation system based on plant analysis.The average grain yield in the survey was 3.2 t ha–1 and the early (high yielding varieties), medium (local) and late maturity (local) types yielded 3.3, 2.8 and 3.0 t ha–1, respectively. The average amount of fertilizers applied to these maturity types were 33, 15 and 7 kg N ha–1 and 15, 8 and 6 kg P ha–1, respectively. Regression analysis indicated only a slight correlation between yield and any level of fertilizer application. On experimental stations yields over 6 t ha–1 were obtained with applications of N over 100 kg ha–1 and P over 22 kg ha–1. Evaluation of nutritional status of plants based on plant analysis showed that in all provinces there were strong and widespread nutrient deficiences primarily of N and secondarily of P, and possibly of some other nutrients. Fertilizer application based on plant analysis gave high yield responses. It was concluded that the major constraints of yield on Bangkok plain are too low fertilizer application especially of N, and unbalanced fertilization of N and P.  相似文献   

5.
The use of fluid fertilizers has increased in recent years. Plant response to field management practices of fluid and solid N fertilizers in furrow-irrigated field studies has not been well-documented. This research studied the response of corn (Zea mays L.) to several field management practices of fluid and solid N fertilizers applied at several rates. Corn grown with sidedressed applications of the fluid fertilizers, urea ammonium nitrate (UAN) and 18-0-0+7Ca, generally had higher grain yields, higher yield efficiencies, higher ear populations, larger seed size, more kernels per ear, and a higher ear leaf N concentration than corn grown with preplant broadcast treatments of urea, ammonium nitrate (AN), and UAN. In 1988, corn grown with 280 kg N ha–1 of AN applied preplant broadcast had a lower grain yield, yield efficiency, kernels per ear, and ear leaf N concentration, while ear population and kernel size were unchanged, in comparison to split applications of UAN at 224 kg N ha–1. In 1989, corn grown with three split applications of UAN at 280 kg N ha–1 had a higher grain yield and produced more kernels per ear without affecting yield efficiency, ear population, kernel size, or ear leaf N concentration compared with treatments at the 224 kg N ha–1 rate. Use of split, side-dressed N management practices in furrow-irrigated corn should eliminate the need to use excessive N rates while maintaining grain yields and other plant responses, resulting in more efficient N use than traditionally achieved.  相似文献   

6.
Intercropping perennials with corn has the potential to improve utilization of the growing season over monocropping corn in regions where a substantial portion of the growing season is too cool for corn growth. The biomass potential and fertilizer N requirements of monocropped corn (Zea mays) grown using conventional tillage were compared with those of corn intercropped with alfalfa (Medicago sativa) in 1987 and 1988. The intercropped alfalfa was harvested once prior to planting the corn each spring. Rotation effects on and N fertilizer requirements for monocropped corn following these treatments and also following monocropped alfalfa, were evaluated in 1989 and 1990. During the two years of intercropping for which data is presented, the critical intercropped corn biomass (13.05 Mg ha–1) estimated using a quadratic-plus plateau model, was close to the monocropped corn biomass (13.01 Mg ha–1), but an estimated 83 kg ha–1 more N was required for intercropped corn to reach the critical biomass. Total biomass (intercropped corn and alfalfa) was 25% greater than that of the monocropped corn, and the total N uptake was 55% greater than that by monocropped corn over the two- year period. After rotation to monocropped corn using conventional tillage in 1989, corn biomass averaged over N rates following intercropping or monocropped corn was lower (P=0.01) than following monocropped alfalfa. Critical corn biomass estimated was highest following alfalfa and lowest following monocropped corn, and more N fertilizer was required to attain the critical biomass under continuous monocropped corn in 1989. Corn yields and N uptake values in 1990 were not significantly different among the cropping systems. The N fertilizer replacement values due to intercropping decreased from above 90 kg N ha–1 in the first year of rotation to less than 40 kg N ha–1 in the second year of rotation. Considering the higher potential for total biomass production and rotation benefit, intercropping is a viable alternative to conventional corn monoculture for forage production.  相似文献   

7.
In a field experiment over three growing seasons, the potential benefits of planting berseem clover (Trifolium alexandrinum L) with Westerwold Italian ryegrass (Lolium multiflorum Lam.) were examined under irrigated continental Mediterranean conditions.Similar N rates (0, 30, 60, 90 and 120 kg N ha–1 cut–1) were applied to both pure Italian ryegrass stands and mixtures, each given three successive cuts. One previously unfertilized cut was performed in late winter. Species in the mixture were established at 50:50 seed ratio but the mean proportion of berseem clover was 14%. Mean winter survival of berseem was 87% but 88% of the plants had leaves damaged by the frost. Forage production varied with both N rate and cutting sequence in both the pure stand and the mixture but differences between the two types of swards were significant only at low levels of fertilizer N. Total DM production over the four cuts in plots with N applications of 0,90, 180, 270 and 360 kg N ha–1 a–1 were 7.14, 9.51, 11.66, 13.91 and 14.36 t DM ha–1 a–1 in pure stand, respectively. Corresponding values for the mixture were 8.80, 10.94, 12.90, 14.05 and 13.64 t DM ha–1 a–1. The mean response of Italian ryegrass in the range of 0–360 kg N ha–1 a–1 was 20 kg DM per kg N applied. The corresponding value for the mixture was 13 kg DM per kg N applied. At the berseem clover proportions reached in this work, N equivalence showed values of about 80 kg N ha–1 a–1. As rates of N increased from 0 to 120 kg N ha–1 cut–1, nitrogen concentration increased by 78%. In the applied range of N fertilizers, N03-N was not affected.
Résumé Dans un essai réalisé au cours de trois saisons agricoles, on a étudié le potentiel de 1'association du bersim avec le raygrass italien. Les cultures ont été emenées et irrigué dans des conditions continentales méditerranéennes. On a appliqué, aussi bien pour la culture pure du raygrass que pour l'association, une fertilisation azotée avec les doses suivantes (0, 30, 60, 90 et 120 kg N/ha/coupe) après chacune des trois coupes successives. Une autre coupe avant fertilisation a été faite à la fin de 1'hiver. Les proportions du bersim et du raygrass dans le mélange de graines étaient de 50:50. Cependant, dans la culture en association, les plantes du bersim n'étaient préentés qu'avec un 14 pourcent. 87% des plantes du bersim ont pu survivre en hiver, dont 88% avaient des feuilles endommagées par les gelées. La production d'herbe a été proportionnelle aux doses de fertilisation pour la culture pure et l'association. Néanmoins, différence entre les rendements de chacune de ces dernières était d'autant plus nette que les doses d'azote incorporées dans le sol étaient faibles. La production de la MS pour les quatre coupes dans les parcelles avec les applications de 0, 90, 180, 270 et 360 kg N ha–1 a–1 étaient de 7.14, 9.51, 11.66, 13.51, 14.36 tMS ha–1 a–1. Le rendement moyen du raygrass italien dans un intervalle de 0-360 kg N ha–1 a–1 a été de 20 kg MS par kg de N de fertilisation. Concernant le bersim, les valeurs équivalentes de N étaient de 1'ordre de 80 kg N ha–1 a–1. Au fur et à mesure que les doses de fertilisation azotée augmente de 0 à 120 kg ha–1 coupe, la concentration en azote augmente de 78%. Dans l'intervalle de la fertilisation azotée appliqué NO3 -N n'a pas été affectée.
  相似文献   

8.
The influence of N fertilizer rate on uptake and distribution of N in the plant,15N labelled fertilizer uptake and sugar yield were studied for 3 years on autumn sown sugar beet (Beta vulgaris L.) under Mediterranean (Southern Spain) rain-fed and irrigated conditions. Available average soil N prior to sowing was 69 kg N ha–1, and net mineralisation in the soil during the growth period was 130 kg N ha–1. Maximum N uptake occurred in the spring and increased with increasing fertilizer rates in the irrigated crop. There was no increase in N uptake in the sugar beet cropped under rain-fed conditions because of water shortage. Maximum average N uptake both by roots and tops was between 200 and 250 kg N ha–1. When N fertilizer was not applied, average uptake from the soil was between 130 and 140 kg N ha–1. At the end of the growth period there was a marked translocation of N from the leaves to the root which increased with the N fertilizer rate. The N ratio top/roots at harvest was 0.45–0.5 and 0.8- - 1 in the irrigated and rain-fed sugar beet, respectively. Maximum15N labelled fertilizer uptake took place in May-June, being larger in irrigated sugar beet or when spring rainfall was more abundant. Fertilizer use efficiency varied between 30% and 68%. Sugar yield response to N fertilizer rates depended on the N available in the soil and on the total water input to the crop, particularly in spring. The response was more constant in the irrigated crop, where optimum yield was obtained with a fertilizer rate of 160 kg N ha–1. In the rain-fed crop, the optimum dose proved more erratic, with an estimated mean of 100 kg N ha–1. The amount of N required to produce 1 t of root and of sugar ranged between 1.5 and 3.8 kg N and between 11.1 and 22.4 kg N respectively, and varied according to the N fertilizer rates applied.  相似文献   

9.
Integrated soil management with leguminous cover crops was studied at two sites in the northern Guinea savanna zone of northern Nigeria, Kaduna (190 day growing season) and Bauchi (150 days). One-year planted fallows of mucuna, lablab, and crotalaria were compared with natural grass fallow and cowpea controls. All treatments were followed by a maize test crop in the second year with 0, 30, or 60 kg N ha–1 as urea. Above ground legume residues were not incorporated into the soil and most residues were burned early in the dry season at the Kaduna site. Legume rotation increased soil total N, maize growth in greenhouse pots, and dry matter and N accumulation of maize. Response of maize grain yield to 30 kg N ha–1 as urea was highly significant at both sites and much greater than the response to legume rotation. The mean N fertilizer replacement value from legume rotation was 14 kg N ha–1 at Kaduna and 6 kg N ha–1 at Bauchi. W ith no N applied to the maize test crop, maize grain yield following legume fallow was 365 kg ha–1 higher than natural fallow at Bauchi and 235 kg ha–1 higher at Kaduna. The benefit of specific legume fallows to subsequent maize was mostly related to above ground N of the previous legume at Bauchi, where residues were protected from fire and grazing. At Kaduna, where fallow vegetation was burned, maize yield was related to estimated below ground N. The results show that legume rotation alone results in small maize yield increases in the dry savanna zone.  相似文献   

10.
To reduce severe soil degradation associated with agriculture an intensified land-use system is being promoted in West African countries. Most soils of the West African savanna zones are so poor that the efficiency of mineral fertilizers, if applied, is very low. For this reason and because of their high cost and unavailability, many small-scale farmers are reluctant to apply fertilizer. This work investigates a fertilizer management strategy using integrated soil fertility management with a leguminous cover crop (mucuna) so as to improve the soil fertility and increase the use efficiency of fertilizer. The experiment was conducted in the coastal savanna of Togo at Djaka Kopé. The aim was to evaluate the effectiveness of mucuna short fallow (MSF) in increasing maize grain yield through an improved use efficiency of mineral fertilizer. A 2-year maize–mucuna relay intercropping system was compared with continuous sole maize cropping. Fertilizer treatments were factorial combinations of 0, 50 and 100 kg nitrogen (N) ha–1 and 0, 20 and 40 kg phosphorus (P) ha–1. While maize grain yield was significantly increased by N fertilization, P did not show any important effect on grain yield. With no N and P applied, grain yield after MSF was on average 40% (572 kg ha–1) higher than without. The response to N was much greater than the response to MSF, indicating that N was undoubtedly the key element for maize yield building. P fertilization and MSF together positively influenced the apparent N recovery fraction (NRF). N uptake alone did not reflect on its own the yield obtained, and the relationship between grain yield and N uptake is shifted by MSF, with the grain yield increase per unit of N uptake being higher with than without MSF. Combining MSF and P fertilization may therefore lead to improved N use efficiency, making the application of fertilizer N (lower rates) more attractive to small-scale farmers.  相似文献   

11.
Field trials were conducted during the 1980–82 seasons to study the response dryland sorghum to nitrogen and phosphorus fertilization in a ferruginous tropical soil. Treatments tested were factorial combinations of three rates of nitrogen (0, 60 and 120 kg N ha–1) and four rates of phosphorus (0, 11, 22 and 33 kg P ha–1). Grain and straw yields and yield components were enhanced by nitrogen fertilization in two out of three years. The optimum N rate for grain yield was 60 kg N ha–1 while straw yield responded up to 120 kg N ha–1. The optimum P rate for dryland sorghum was 11 kg P ha–1. Both N and P enhanced grain weight per head, grain number, test weight and tillering significantly but it was only N which enhanced 1000-grain weight and flag leaf area. Dry matter productin was increased by N fertilization but not by P. There were no significant N × P interactions for any of the parameters studied. Dryland sorghum response to N and P fertilization was influenced by season, time of planting and rainfall distribution.  相似文献   

12.
Effects of rate and time of nitrogen fertilization on growth, yield and yield components of upland cotton (Gossypium hirsutum L) were studied in two years (1975–76). Four rates of nitrogen application (0, 26, 52 and 78 kg ha–1) timed at 3 or 8 weeks after sowing were compared. Seed cotton yield components increased significantly with increased N application at least up to 52 kg N ha–1, with yield increases between 49% and 73%. Seed cotton yield was influenced by treatments mainly through boll number. Both crop growth rate and fruiting were enhanced by nitrogen fertilization. Applying N at 8 weeks (flowering) favoured yield only slightly over that at 3 weeks (thinning), but improved crop growth and fruiting by about 64% and 24%, respectively. There were significant N rate × time interactions in favour of fertilization at flowering. Applying 52 kg N ha–1 at 8 weeks seems best for cotton in the Nigerian savannah.  相似文献   

13.
Nitrogen use efficiency (NUE) of tef, a major staple crop in Ethiopia, is very low, either caused by untimely use of nitrogen (N) fertilizers or lack of other essential nutrients like sulphur (S). The average grain yield of this crop is low, averaging <0.8 Mg ha−1 in farmer’s fields of the semi-arid conditions. Therefore, the present study was conducted to see the effect of the timing of combined N and S fertilization on the yield, yield components, and N and S concentration in the plant parts of the crop. A factorial combination of three rates of N (0, 70, and 105 kg ha−1) with four rates of S (0, 16, 32, and 48 kg ha−1) was applied in randomized complete blocks in three replications. The experiment was carried out in the 2004 and 2005 cropping seasons in the Cambisols of the semi-arid area of Ethiopia. The crop responded significantly (P < 0.05) to both split (one-third at planting and two-thirds at late tillering) and whole (all at planting) N and S applications and years. Combined N and S fertilization increased the dry matter (DM) and grain yields on average by 1.7 and 0.3 Mg ha−1, compared with the control. Similarly, S fertilization increased the NUE of the tef crop by 36%. Nitrogen concentration of shoots was found to significantly increase with S application (P < 0.05), with strong positive interactions both in the split and whole applications. The sulphur increase in grains was significant with N rates for both applications, with significant interaction effects observed for the split application in both cropping seasons. Split application resulted in 0.9 and 0.3 Mg ha−1 significant increase in DM and grain yields, averaged for both years and treatments compared with the whole application. Similar significant increases were observed for panicle yield, NUE, and shoot and grain N and S concentrations. The average N:S ratio in grains was 10.6:1. Significant (P < 0.05) yearly variations were also observed. Dry matter and grain yields of 2005 were higher on average by 2.10 and 0.32 Mg ha−1 than those of the 2004 cropping season. The percentage of N and S concentrations of grains, averaged for both applications, were higher by 13 and 9% in 2004; even though the N and S uptakes of 2005 were higher on average by 5.0 and 0.5 kg ha−1 than those of the 2004 cropping season. This work showed that the yield response and NUE of the tef crop could be improved with split N and S fertilizer applications, with tef-producing farmers benefitting from the application of S-containing N fertilizers to soils deficient in these nutrients.  相似文献   

14.
A field study was conducted in arid-Saharan Morocco to assess the fate of fertilizer N in a wheat (Triticum durum var. Karim)–wheat cropping sequence. Therefore, 85 kg N ha–1 labeled with 9.764 atom % excess 15N was applied in a three-split application. The fertilizer N recovery by the wheat in the first year was 33.1%. At harvest, 64.8% of fertilizer N was found in the 0–80 cm profile as residual fertilizer-derived N. 2.1% of the applied N could not be accounted for in the season 1996/1997. The recovery of the residual labeled fertilizer N by the subsequent wheat crop was 6.4% for the treatment without residue incorporation and 7.4% for the treatment with residue incorporation. The possible reason for this low plant recovery was immobilization of the fertilizer N. The total recovery of fertilizer N over the two growing seasons was 82.3% and 86.1% for the treatment without and with residue incorporation, respectively. The not recovered N after the second cropping season was 15.6% and 11.8% for the treatment without and with residue incorporation, respectively. The loss of labeled N by the soil–plant system was not due to leaching but to denitrification and volatilization. In the treatment (N+*R) with labeled residue incorporation, the percentage of N recovery by plant was 16.2, indicating the mineralisation of the residue applied.  相似文献   

15.
At two sites, microplots under winter wheat were given 140 kg N ha–1 as labelled ammonium nitrate split in 80 kg N ha–1 at tillering and 60 kg N ha–1 at shooting. Soil and plant samples were analyzed at shooting, after anthesis and at grain harvest and a15N balance was established. The average recovery rate of 95% indicates that there were no marked N losses due to leaching and denitrification, which is attributed to the low rainfall in the two months after fertilizer application. Between 19 and 23% of the fertilizer N remained in the 0–30 cm soil layer as organically bound soil N. Up to 64% was taken up by the above-ground crop. On the loamy sand, 4% of the fertilizer N at harvest remained in the roots in the 0–30 cm layer and only 3% was found as inorganic N in the 0–90 cm soil layer. The fertilizer N applied diminished plant uptake of soil N in the period between fertilizer application and harvest. As compared with the control, the fertilized plants extracted 25 and 28% less soil N from loamy sand and loess soil, respectively. The results show that application of mineral N fertilizer helps to maintain the mineralizable N content of the soil, which has been accumulated in the course of long-term intensive crop production, by adding N to the soil organic pool and simultaneously reducing the supply of soil N to the plants.  相似文献   

16.
Dry-seeded delayed-flooded rice in Italy is important in some areas with high sand content. The effects of N application timing and rates on grain yield, milling yield, plant height, total biomass, harvest index (HI) and crop N content were evaluated for dry-seeded delayed-flooded rice in Italy to increase the N use efficiency and to study N fertilizer recommendations. Two widely grown non-semi-dwarf varieties were studied: Drago and Loto. Three N rates were used: 60, 120 and 180 kg N ha–1. For each rate the fertilizer was applied in seven splits across three growth stages: pre-sowing, pre-flooding and panicle differentiation. Drago produced higher yields and N application at all stages increased yield. Late N application caused the development of secondary sterile tillers, decreasing harvest index. Loto responded to earlier N applications but not to late N applications. In contrast with other trials outside Italy, pre-plant N fertilization was effective in increasing yield. Brown rice and total milled rice yields were higher for Loto. Increasing the applied N rate increased the head rice yield range. With low N no low values were recorded and variation between splits was small. With high N the highest head yield was observed with split application. Height was significantly affected by N rate and split, with a range of 65 to 92 cm and 54 to 86 cm for Drago and Loto, respectively. N application at tillering was more effective. N rate and split affected biomass and decreased HI. Crop N content at maturity was affected by late N application and by total applied fertilizer. N content in the panicle showed lower variation with N split and rate and was negatively correlated with yield. At 120 and 180 kg N ha–1 all nitrogen applied pre-flooding gave good results in both sites, but the best results were obtained with N split at pre-sowing and pre-flooding, with low yield increase moving from 120 to 180 kg N ha–1. We recommend late N applications for Drago (medium-late variety), but not for Loto (early variety).  相似文献   

17.
Information on the fate and distribution of surface-applied fertilizer P and K in soil is needed in order to assess their availability to plants and potential for water contamination. Distribution of extractable P (in 0.03 M NH4F + 0.03 M H2SO4 solution) and exchangeable K (in neutral 1.0 M ammonium acetate solution) in the soil as a result of selected combinations of 30 years (1968–1997) of N fertilization (84–336 kg N ha–1), 10 years of P fertilization (0–132 kg P ha–1), and 14 years of K fertilization (0 and 46 kg K ha–1) was studied in a field experiment on a thin Black Chernozem loam under smooth bromegrass (Bromus inermis Leyss.) at Crossfield, Alberta, Canada. Soil samples were taken at regular intervals in October 1997 from 0–5, 5–10, 10–15, 15–30, 30–60, 60–90 and 90–120 cm layers. Soil pH decreased with N rate and this declined with soil depth. Increase in extractable P concentration in the soil reflected 10 years of P fertilization relative to no P fertilization, even though it had been terminated 20 years prior to soil sampling. The magnitude and depth of increase in extractable P paralleled N and P rates. The extractable P concentration in the 0–5 cm soil layer increased by 2.2, 20.7, 30.4 and 34.5 mg P kg–1 soil at 84, 168, 280 and 336 kg N ha–1, respectively. The increase in extractable P concentration in the 0–15 cm soil depth was 1.5 and 12.8 mg P kg–1 soil with application of 16 and 33 kg P ha–1 (N rate of 84 N ha–1 for both treatments), respectively; and it was 81.6 and 155.2 mg P kg–1 soil with application of 66 and 132 kg P ha–1 (N rate of 336 N ha–1 for both treatments), respectively. The increase in extractable P at high N rates was attributed to N-induced soil acidification. Most of the increase in extractable P occurred in the top 10-cm soil layer and almost none was noticed below 30 cm depth. Surface-applied K was able to prevent depletion of exchangeable K from the 0–90 cm soil, which occurred with increased bromegrass production from N fertilization in the absence of K application. As only a small increase of exchangeable K was observed in the 10–30 cm soil, 46 kg K ha–1 year–1 was considered necessary to achieve a balance between fertilization and bromegrass uptake for K. The potential for P contamination of surface water may be increased with the high N and P rates, as most of the increase in extractable P occurred near the soil surface.  相似文献   

18.
To evaluate the response of dryland wheat (Triticum aestivum L.) to mulching in preceding maize and fertilizer N application field experiments were conducted for six years (1980–86) with maize-wheat sequence on a sandy loam soil in northern India. Four rates of N application viz. 0, 40, 60 and 80 kg N ha–1 in wheat were combined with three mulch treatments viz. no mulch (M0), paddy straw mulch (Mp) and basooti (Premma mucronate) mulch (Mb) applied at the rate of 4 tons ha–1 on dry weight basis applied three weeks before harvest of maize. Mulching (Mp and Mb) increased (profile) stored moisture at wheat seedling by 31 to 88 mm. Mb also increased NO3-N content by 33 to 42 kg ha–1 in 0–120 cm profile over M0 and Mp. Over the years, Mp increased wheat yield by 11 to 515 kg ha–1 and Mb by 761 to 879 kg ha–1. Wheat yield response to mulching was related to rainfall pattern during its growth season. Significant response to mulching was obtained only in years when rainfall during vegetative phase of the crop was low. Amount and distribution of rainfall during two main phases of crop development affected the N use efficiency by wheat. On an average, each cm of rain substituted for 3.5, 4.6 and 6.5 kg of applied N ha–1 under M0, Mp and Mb, respectively. Split rainfall for two main phases of crop growth, available stored water at seeding, fertilizer N and profile NO3-N content accounted for 89 per cent variability in wheat yield across years and mulching treatments.  相似文献   

19.
Nitrogen demand from soybean seeds during seed filling is very high and has been proposed as the cause of nitrogen remobilization and leaf senescence. Previous research has not shown consistent effects of late season fertilization on seed yield, while its effects on leaf senescence have not been evaluated. Two field experiments were performed to determine the effects of a late season N fertilization on leaf senescence and fall, seed yield and its components, and residual soil nitrate, and to evaluate the potential risk of groundwater contamination. Two rates of nitrogen (50 and 100 kg N ha–1) were applied at the R3 and R5 development stages. Nitrogen fertilization, either at R3 or R5, increased soil nitrate availability during the seed-filling period. Seed yield, seed number and protein content were not affected by N fertilization. The addition of 100 kg N ha–1 produced a small delay of 1–2 days in the leaf fall, and slightly increased seed size (3.6%). Our results suggest that increasing soil N availability during the seed-filling period is not an effective way to delay leaf senescence or to increase seed growth and yield of soybean. Nitrogen fertilization increased the level of residual nitrate in the top soil at one site (the one with lowest seed yield), increasing the risk of nitrate leaching during subsequent fallow.  相似文献   

20.
In order to achieve efficient use of nitrogen (N) and minimize pollution potentials, producers of irrigated maize (Zea mays L.) must make the best use of N from all sources. This study was conducted to evaluate crop utilization of nitrate in irrigation water and the effect N fertilizer has on N use efficiencies of this nitrate under irrigated maize production. The study site is representative of a large portion of the Central Platte Valley of Nebraska where ground water nitrate-N (NO3-N) concentrations over 10 mg L–1 are common. Microplots were established to accommodate four fertilizer N rates (0, 50, 100, and 150 kg ha–1) receiving irrigation water containing three levels of NO3-N (0, 10, 20 mg L–1). Stable isotope15N was applied as a tracer in the irrigation water for treatments containing 10 and 20 mg L–1 NO3-N. Plots that did not receive nitrate in the irrigation water where tagged with15N fertilizer as a sidedress treatment. Sidedressed N fertilizer significantly reduced irrigation-N uptake efficiencies. When residual N uptake is added to first year plant usage, total irrigation NO3-N uptake efficiencies are similar to total sidedress N fertilizer uptake efficiencies for our cropping system over the two year period. Efficiency of irrigation-N use depends on crop needs and availability of N from other sources during the irrigation season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号