首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mechanical Behavior of a Borosilicate Glass Under Aqueous Corrosion   总被引:2,自引:0,他引:2  
In France, fission products are being vitrified for a possible final geological disposal. Under disposal conditions, corrosion of the glass by groundwater as well as stress corrosion because of stresses occurring at surface flaws cannot be excluded. Within this framework, the mechanical behavior of the French simulated nuclear waste glass SON68 was studied by Vickers indentation and fracture experiments in air and in a corrosive solution. The glass was corroded at 90°C in a solution enriched with Si, B, and Na. The results showed that the glass corrosion enhances the cracks propagation relative to experiments in air. The indentation fracture toughness ( K I C ) obtained using a four-point bending test showed that the K I C of the glass decreased with increasing corrosion time.  相似文献   

2.
Indentation fracture toughness models generally share the derived parameter Pc −3/2, where P is the indentation load and c the measured crack length. Biases, inherent to error propagation through this nonlinear transformation ( c to c 3/2), can be introduced into calculated values for K I C , depending upon the amount of averaging of crack length data performed prior to the transformation. This work utilizes Monte Carlo simulations to evaluate the bias in K I C calculated using both mean and linear regression methods. Significant positive biases were demonstrated when using mean-based calculations where coefficients of variation (cv) in c exceeded 10%. Regression methods produced significantly less bias. With cv < 10% or when c is averaged per load, both methods produce essentially unbiased estimates for K I C .  相似文献   

3.
Fracture toughness of six dental porcelains with leucite content ranging from 0 to 22 vol% was evaluated by indentation fracture (IF), surface crack in flexure (SCF), and single edge pre-cracked beam (SEPB) methods. The results of the IF method were similar to those of the SCF method for all the porcelains investigated. The results of the SEPB were similar to those of the other two methods only for the glassy porcelains, but for leucite-based porcelains this method resulted in higher values of K I c . Based on microstructure, fractographic analysis, and an additional single edge V-notched beam test, it was concluded that the pre-crack size influences the value of K I c for porcelains reinforced by leucite. For design and failure analysis purposes, the K I c determined by SCF method should be preferred, since fracture of dental restorations usually starts from small surface cracks.  相似文献   

4.
The single-edge precracked-beam (SEPB) specimen test, using the "bridge indentation" method, is one of the standard test methods in the new ASTM standard for the determination of the fracture toughness of ceramics. In support of this effort, the effect of several test parameters on the fracture-toughness ( K I C ) values was established. The effect of the residual stress, because of the indent and the alignment in three- and four-point bending, on the K I C values was determined using aluminum nitride specimens. The results show that indent loads should be kept below 10 kgf, and the crack-plane angle should be <5°, to prevent artificially high K I C values.  相似文献   

5.
The influence of crystal volume fraction on fracture toughness ( K I C ) and indentation strength was analyzed for Li2O-Al2O3-CaO-SiO2 (LACS) and LACS glass-ceramics containing 0.58 mmol% AgNO3 (LACS-0.58Ag) or 0.78 mmol% AgNO3 (LACS-0.78Ag). The mean flexure strength, indentation strength, and KI C values of the LACS-0.78Ag groups increased with volume fraction of crystallinity. To achieve the greatest strength and KI C in LACS-Ag specimens, a high volume fraction of crystallinity (95%) had to be produced. However, the relationship between volume fraction of crystal phase and translucency had to be analyzed to determine the influence of crystallization on the potential esthetic results that are essential for dental applications. Addition of AgNO3 to LACS glass produced a change from surface crystallization to bulk crystallization.  相似文献   

6.
Fracture characteristics of TiO2− x were studied as a function of Stoichiometry. With increasing x , the fracture toughness K I e and the fracture surface energy γ f decrease and the amount of transgranular cleavage increases, corresponding to the increased concentration of planar defects within the grains. Increasing nonstoichiometry also shifted the ( K I- V ) diagram to lower K I values, commensurate with the KI e decrease. Water accelerated stress corrosion by promoting intergranular failure during subcritical crack growth.  相似文献   

7.
Surface flaws of controlled size and shape were produced in high-strength hot-pressed Si3N4 with a Knoop microhardness indenter. Fracture was initiated at a single suitably oriented flaw on the tensile surface of a 4-point-bend specimen, with attendant reduction in the measured magnitude and scatter of the fracture strength. The stress required to propagate the controlled flaw was used to calculate the critical stress-intensity factor, K IC, from standard fracture-mechanics formulas for semielliptical surface flaws in bending. After the bend specimen had been annealed, the room-temperature K IC values for HS-130 Si3N4 increased to a level consistent with values obtained from conventional fracture-mechanics tests. It was postulated that annealing reduces the residual stresses produced by the microhardness indentation. The presence of residual stresses may account for the low K IC, values. Elevated-temperature KIC values for HS-130 Si3N4 were consistent with double-torsion data. Controlled flaws in HS-130 Si3N4 exhibited slow crack growth at high temperatures.  相似文献   

8.
The Mode I fracture toughness ( K I C ) of a small-grained Si3N4 was determined as a function of hot-pressing orientation, temperature, testing atmosphere, and crack length using the single-edge precracked beam method. The diameter of the Si3N4 grains was <0.4 µm, with aspect ratios of 2–8. K I C at 25°C was 6.6 ± 0.2 and 5.9 ± 0.1 MPa·m1/2 for the T–S and T–L orientations, respectively. This difference was attributed to the amount of elongated grains in the plane of crack growth. For both orientations, a continual decrease in K IC was observed through 1200°C, to ∼4.1 MPa·m1/2, before increasing rapidly to 7.5–8 MPa·m1/2 at 1300°C. The decrease in K IC through 1200°C was a result of grain-boundary glassy phase softening. At 1300°C, reorientation of elongated grains in the direction of the applied load was suggested to explain the large increase in K IC. Crack healing was observed in specimens annealed in air. No R -curve behavior was observed for crack lengths as short as 300 µm at either 25° or 1000°C.  相似文献   

9.
The mixed-mode fracture of a large-grain-size alumina ceramic and a soda-lime glass is investigated. These ceramics are tested using straight-through precracked or notched specimens. The straight-through precrack is introduced by the single-edge-precracked beam method. Precracked or notched specimens are subjected to combined mode I/II or pure mode II fracture, under asymmetric four-point bending, and pure mode I fracture, under symmetric four-point bending. A pure mode II fracture is never achieved in the precracked polycrystalline alumina by the crack-face friction inevitably induced by grain interlocking/bridging. The crack-face friction in sliding mode reduces the local mode II stress intensity factor in the crack-tip region and produces a sizable amount of mode I deformation. Accounting for the contribution of the crack-face friction to the crack-tip local stress intensity factors, K I and K II, in mixed-mode fracture tests, the experimental results of the K I/ K I c versus K II/ K I c envelope and the initial angle of noncoplanar crack extension are in good agreement with the theoretical predictions of the maximum hoop-stress theory.  相似文献   

10.
The influence of alumina content (0-15 wt% Al2O3) on the indentation strength, fracture toughness ( K I c ), and crystal structure of fluorcanasite (Al2O3-CaO-F-K2O-Na2O-SiO2) glass-ceramics was analyzed. Increasing the Al2O3 content from 0 wt% (CAN0) to 8 wt% (CAN8) caused the mean indentation strength and K I c values to decrease from 213 ± 14 MPa and 2.7 ± 0.1 MPa·m1/2, respectively, for the CAN0 glass-ceramic to 78 ± 16 MPa and 1.3 ± 0.2 MPa·m1/2, respectively, for the CAN8 glass-ceramic. Increased Al2O3 concentrations (0-15 wt%) significantly affected the crystal size, crystal shape, aspect ratio, and crystal aggregation characteristics of the fluorcanasite glass-ceramics. The addition of greaterthan equal to8 wt% of Al2O3 to fluorcanasite glass caused a transformation from canasite to leucite.  相似文献   

11.
Semielliptical surface flaws of different sizes were introduced into Al2O3 by Knoop microhardness indentation. The specimens were fractured by four-point bending and the profiles of the indentation flaws were determined by observing the fracture surfaces with a scanning electron microscope. The relation between the indentation flaw size and the fracture strength could be well explained by applying the fracture-mechanics analysis for semielliptical surface flaw in bending. The calculated values of the as-indented critical stress intensity factor, KIC, were lower than previously reported presumably because of the influence of the residual stresses produced by the indenter.  相似文献   

12.
Micrometer-sized refractory metal fibers of Nb were produced by an unconventional method of mechanically reducing arc-cast ingots of Nb-Cu in which the original microstructure contains ductile Nb precipitates. During mechanical reduction the precipitates were elongated into fibers, which were extracted by chemically dissolving the Cu matrix. Composite specimens of Nb fibers in a glass matrix were fabricated by dry-blending a mixture of fibers and powdered glass, then hot-pressing into disks. Fracture toughness, K I C , was measured using microin-dentation and three-point bending methods. The fracture toughness increased with increasing volume fraction of fibers with the greatest improvement noted at 0.10≤ vf ≤0.20. The values of K I C increased as the interfiber spacing and the fiber diameter decreased. Both the effective fracture surface energy and the fracture strength were enhanced by increasing vf . The small fibers embedded in the brittle matrix showed virtually no evidence of microcracking; Nb fibers and glass matrices also demonstrated good interfacial adhesion. Fractographs suggested that the fibers were very effective in resisting crack propagation. Experimental observations were explained using the concept of crack-front bowing and fiber bridging.  相似文献   

13.
The strength and fracture of a directionally solidified Y3Al5O12/Al2O3 eutectic fiber were investigated. The fiber was grown continuously by an edge-defined film-fed growth technique. The microstructure was characterized using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The tensile strength and Weibull's modulus of the eutectic fibers were determined in the as-fabricated state and after extended thermal exposure at 1460°C in air. Fractographic analysis was used to identify and classify the strength-limiting mechanisms. The fracture toughness and crack growth behavior were characterized by an indentation technique. A fracture mechanics analysis was also used to establish the relationships between surface flaw size, tensile strength, and fracture toughness of the fiber.  相似文献   

14.
On the Vickers Indentation Fracture Toughness Test   总被引:5,自引:0,他引:5  
The Vickers indentation fracture toughness test, or VIF, is addressed by considering its origins and the numerous equations that have been applied along with the technique to estimate the fracture resistance, or the K I c of ceramics. Initiation and propagation of cracks during the VIF test are described and contrasted with the pre-cracking and crack growth for internationally standardized fracture toughness tests. It is concluded that the VIF test technique is fundamentally different than standard fracture toughness tests. The VIF test has a complex three-dimensional crack system with substantial deformation residual stresses and damage around the cracks. The VIF test relates to an ill-defined crack arrest condition as opposed to the rapid crack propagation of the standardized fracture toughness tests.
Previously published fracture toughness results employing the VIF technique are reviewed. These reveal serious discrepancies in reported VIF fracture toughness values. Finally, recent fracture resistance measurements by the VIF technique for the Standard Reference Material SRM 2100 are presented. These are compared with standardized test results for the same material. It is concluded that the VIF technique is not reliable as a fracture toughness test for ceramics or for other brittle materials. What the VIF actually measures in terms of fracture resistance cannot be readily defined. It is recommended that the VIF technique no longer be acceptable for the fracture toughness testing of ceramic materials.  相似文献   

15.
The mode I fracture toughness ( K Ic) of boron carbide (B4C) and titanium diboride (TiB2) was determined using four competing techniques. The indentation strength (IS), chevron notched beam (CNB), and indentation fracture (IF) methods are common techniques that were compared to the recently standardized single-edge precrack beam (SEPB) method. The SEPB method was more difficult to apply, but it represents the most rigorous method for K Ic determination, because it uses few assumptions and requires a direct measurement of crack length. The IS method was an expeditious and economical alternative when low indentation loads were used. CNB K Ic values were virtually rate-independent when displacement rates less than or equal to 0.5 mm/min were used. The IF method was the least satisfactory technique, because of high variability in K c values and because of the low differentiation between the two materials studied.  相似文献   

16.
Indentation fracture behavior of three-layer Al2O3-ZrO2 composites with substantial compressive residual stresses was compared with the behaviors of monolithic Al2O3 and Al2O3-ZrO2 ceramics without intentionally introduced residual stresses. The indentation cracks were smaller in the three-layer specimens relative to the monolithic specimens in agreement with the predictions of indentation fracture mechanics theory. Indentation and strength testing were used to show that a residual compressive stress of approximately 500 MPa exists in the outer layers of the three-layer composites. The three-layer specimens showed excellent damage resistance in that the strength differential between the three-layer and monolithic indented specimens was maintained at indentation loads up to 1000 N, the maximum indentation load used in the experiments.  相似文献   

17.
Fracture toughness values obtained using both Knoop and Vickers-indentation-produced controlled surface flaws were compared as a function of indentation load for a well-characterized glass-ceramic material. At the same indentation load, Knoop cracks were larger than Vickers. As-indented Kc values calculated from fracture mechanics expressions for surface flaws were higher for Knoop flaws than Vickers, but both types gave low Kc values due to indentation residual stress effects. Analysis suggested that theoretical formalisms for indentation residual stress effects based on fracture mechanics solutions for a center-loaded penny crack in an infinite medium should apply to both indentation types. Kc values calculated using the residual stress approach were identical for Knoop and Vickers controlled surface flaws when a "calibration" value for a constant term in the expression for Kc was used for both indentation types.  相似文献   

18.
The mixed-mode fracture of hot-pressed Si3N4 was investigated using inclined indentation surface flaws in bending and large crack geometries in combined tension/torsion. Non-coplanar fracture was observed in all cases. Values of KIc, KIIc, and KIIIc stress intensity factors were obtained, with ratios KIIc/KIc= 0.79 and KIIIc/KIc= 1.55 observed. For large cracks, mode II conditions had more of an effect on mode I fracture than mode III conditions. The mixed-mode I-II fracture of surface flaws was significantly different from that for large cracks, suggesting surface flaw shear resistance effects. A model describing these effects was derived, based on the ratio of the crack-opening displacement to the crack surface asperity height.  相似文献   

19.
Compact tension tests and indentation-fracture tests have been conducted to study the effects of an applied electric field on the fracture toughness ( K I C ) of poled commercial lead zirconate titanate (PZT) ceramics. The experimental results show that an applied electric field, either parallel or antiparallel to the poling direction, considerably reduces the K I C value of the PZT ceramics. The reduction in K I C for a negative field is larger than that for a positive field of the same strength. The failure mode in the PZT ceramics is basically transgranular, insensitive to the applied electric field.  相似文献   

20.
Advances in the Grinding Efficiency of Sintered Alumina Abrasives   总被引:1,自引:0,他引:1  
The study relates the grinding power of different grades of sintered alumina abrasives to their microstructures and to basic mechanical properties in comparison with conventionally fused electrocorundum and with an electrofused alumina/ zirconia eutectic. Contrary to the traditional approach of the Battelle test, the fracture toughness K I c of individual grains is measured by a quantitative indentation analysis. Compared with fused corundum, sintered alumina grits exhibit an increased toughness and grinding efficiency, but the further increase of K I c in the eutectic does not improve the grinding performance. The key parameter for grinding is the inherent hardness of the abrasive. The elimination of flaws by a new approach results in a strong increase in the grinding power of sintered alumina abrasives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号