首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We had reported engineering of the heme monooxygenase cytochrome P450cam from Pseudomonas putida with the F87W/Y96F/L244A/V247L mutations for the oxidation of pentachlorobenzene (PeCB), a recalcitrant environmental contaminant, to pentachlorophenol. In order to provide further insights into P450 structure, function and substrate recognition, we have determined the crystal structure of this 4-mutant without a substrate and its complex with PeCB. PeCB is bound face-on to the heme, with a weak Fe--Cl interaction. One PeCB chlorine is located in the cavity generated by the L244A mutation, in striking illustration of the role of this mutation in promoting PeCB binding. The structures also show that the P450(cam) oxygen-binding groove between G248 and T252 is flexible and can tolerate significant deviations from their conformations in the wild type without loss of enzyme activity. Analysis of the PeCB binding interactions led to introduction of the T101A mutation to enable the substrate to reorient during the catalytic cycle for more efficient oxidation. The resultant 5-mutant F87W/Y96F/T101A/L244A/V247L is 3-fold more active for PeCB oxidation than the 4-mutant. Polychlorinated benzene binding by the mutants and the partitioning between substrate oxidation and non-productive (uncoupling) side reactions are correlated with the structural data.  相似文献   

2.
The 12 kDa FK506-binding protein FKBP12 is a cis-trans peptidyl-prolylisomerase that binds the macrolides FK506 and rapamycin. Wehave examined the role of the binding pocket residues of FKBP12in protein–ligand interactions by making conservativesubstitutions of 12 of these residues by site-directed mutagenesis.For each mutant FKBP12, we measured the affinity for FK506 andrapamycin and the catalytic efficiency in the cis–transpeptidyl-prolyl isomerase reaction. The mutation of Trp59 orPhe99 generates an FKBP12 with a significantly lower affinityfor FK506 than wild-type protein. Tyr26 and Tyr82 mutants areenzymatically active, demonstrating that hydrogen bonding bythese residues is not required for catalysis of the cis–transpeptidyl-prolyl isomerase reaction, although these mutationsalter the substrate specificity of the enzyme. We conclude thathydrophobic interactions in the active site dominate in thestabilization of FKBP12 binding to macrolide ligands and tothe twisted-amide peptidyl-prolyl substrate intermediate.  相似文献   

3.
Mutation in active site would either completely eliminate enzyme activity or may result in an active site with altered substrate-binding properties. The enzyme xylose isomerase (XI) is sterospecific for the α-pyranose and α-fructofuranose anomers and metal ions (M1 and M2) play a pivotal role in the catalytic action of this enzyme. Mutations were created at the M2 site of XI of Thermus thermophilus by replacing D254 and D256 with arginine. Mutants D254R and a double mutant (D254R/D256R) showed complete loss of activity while D256R showed an increase in the specificity on D-lyxose, L-arabinose and D-mannose which are non-preferential substrates for XI. Both wild type (WT) and D256R showed higher activity at pH 7.0 and 85°C with an increase in metal requirement. The catalytic efficiency Kcat/Km (S(-1) mM(-1)) of D256R for D-lyxose, L-arabinose and D-mannose were 0.17, 0.09 and 0.15 which are higher than WT XI of T.thermophilus. The altered catalytic activity for D256R could be explained by the possible role of arginine in catalytic reaction or the changes in a substrate orientation site. However, both the theories are only assumptions and have to be addressed with crystal study of D256R.  相似文献   

4.
The dimeric enzyme triosephosphate isomerase (TIM) has a verytight and rigid dimer interface. At this interface a criticalhydrogen bond is formed between the main chain oxygen atom ofthe catalytic residue Lys13 and the completely buried side chainof Gln65 (of the same subunit). The sequence of Leishmania mexicanaTIM, closely related to Trypanosoma brucei TIM (68% sequenceidentity), shows that this highly conserved glutamine has beenreplaced by a glutamate. Therefore, the 1.8 Å crystalstructure of leishmania TIM (at pH 5.9) was determined. Thecomparison with the structure of trypanosomal TIM shows no rearrangementsin the vicinity of Glu65, suggesting that its side chain isprotonated and is hydrogen bonded to the main chain oxygen ofLys13. Ionization of this glutamic acid side chain causes apH-dependent decrease in the thermal stability of leishmaniaTIM. The presence of this glutamate, also in its protonatedstate, disrupts to some extent the conserved hydrogen bond network,as seen in all other TIMs. Restoration of the hydrogen bondingnetwork by its mutation to glutamine in the E65Q variant ofleishmania TIM results in much higher stability; for example,at pH 7, the apparent melting temperature increases by 26°C(57°C for leishmania TIM to 83°C for the E65Q variant).This mutation does not affect the kinetic properties, showingthat even point mutations can convert a mesophilic enzyme intoa superstable enzyme without losing catalytic power at the mesophilictemperature.  相似文献   

5.
The interactions between HIV–1 protease and its boundinhibitors have been investigated by molecular mechanics calculationsand by analysis of crystal structures of the complexes in orderto determine general rules for inhibitor and substrate bindingto the protease. Fifteen crystal structures of HTV–1 proteasewith different peptidomimetic inhibitors showed conservationof hydrogen bond interactions between the main chain C=O andNH groups of the inhibitors and the C=O and NH groups of theprotease extending from P3 C=O to P3' NH. The mean length ofthe hydrogen bonds between the inhibitor and the flexible flapsand the conserved water molecule (2.9 À) is slightlyshorter than the mean length of hydrogen bonds between the inhibitorand the more rigid active site region (3.1 À) of theprotease. The two hydrogen bonds between the conserved waterand P2 and P1' carbonyl oxygen atoms of the inhibitor are theshortest and are predicted to be important for the tight bindingof inhibitors. Molecular mechanics analysis of three crystalstructures of HIV-1 protease with different inhibitors withindependent calculations using the programs Discover and Brugelgave an estimate of 56-68% for the contribution of all the inhibitormain chain atoms to the total calculated protease–inhibitorinteraction energy. The contribution of individual inhibitorresidues to the interaction energy wascalculated using Brugel.The main chain atoms of residue P2 had a consistently largefavorable contribution to the total interaction energy, probablydue to the presence of the two short hydrogen bonds to the flexibleflap. The contribution of individual inhibitor side chains dependedon the size of the side chain and the presence of specific hydrogenbond interactions with the protease.  相似文献   

6.
Laccases are oxidizing enzymes of interest because of their potential environmental and industrial applications. We performed site-directed mutagenesis of a laccase produced by Trametes versicolor in order to improve its catalytic properties. Considering a strong interaction of the Asp residue in position 206 with the substrate xylidine, we replaced it with Glu, Ala or Asn, expressed the mutant enzymes in the yeast Yarrowia lipolytica and assayed the transformation of phenolic and non-phenolic substrates. The transformation rates remain within the same range whatever the mutation of the laccase and the type of substrate: at most a 3-fold factor increase was obtained for k(cat) between the wild-type and the most efficient mutant Asp206Ala with 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic) acid as a substrate. Nevertheless, the Asn mutation led to a significant shift of the pH (DeltapH = 1.4) for optimal activity against 2,6-dimethoxyphenol. This study also provides a new insight into the binding of the reducing substrate into the active T1 site and induced modifications in catalytic properties of the enzyme.  相似文献   

7.
Molecular dynamics simulations of HIV-1 protease with peptide substrate   总被引:1,自引:0,他引:1  
Molecular dynamics simulations of human immunodeficiency virus(HIV)-l protease with a model substrate were used to test ifthere is a stable energy minimum for a proton that is equidistantfrom the four delta oxygen atoms of the two catalytic asparticacids. The crystal structure of HIV-1 protease with a peptidicinhibitor was modified to model the peptide substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val-Glnfor the starting geometry. A proton was positioned between thetwo closest oxygen atoms of the two catalytic aspartic acids,and close to the carbonyl oxygen of the scissile bond in thesubstrate. All crystallographic water molecules were included.Two molecular dynamics simulations were run: 30 ps with united-atompotentials and 40 ps using the more accurate all-atom potentials.The molecular dynamics used a new algorithm that increased thespeed and allowed the elimination of a cut-off for non-bondedinteractions and the inclusion of an 8 shell of water moleculesin the calculations. The overall structure of the protease dimer,including the catalytic aspartic acids, was stable during thecourse of the molecular dynamics simulations. The substrateand a water molecule, that is an important component of thebinding site, were stable during the simulation using all-atompotentials, but more mobile when united-atom potentials wereused. A Poincare map representation showed that the positionsof the proton and its coordinating oxygen atoms were stablefor 93% of both simulations, although many of the buried andpoorly accessible water molecules exchanged with solvent. Theproton has a stable minimum energy position and maintains coordinationwith all four delta oxygen atoms of the two catalytic asparticacids and the carbonyl oxygen of the scissile bond of the substrate.Therefore, a loosely bound hydrogen ion at this position willnot be rapidly exchanged with solvent, and will rebond to eithera catalytic aspartic acid or possibly the substrate. The implicationsfor the reaction mechanism are discussed.  相似文献   

8.
The role of a beta-bulge in Escherichia coli dihydrofolate reductase (DHFR) has been explored by a series of insertion and deletion mutations. Insertion of a seven amino acid sequence from a structurally equivalent 'beta-blowout' sequence from human DHFR destabilizes E. coli DHFR by 3.6 kcal/mol and decreases catalytic efficiency (kcat/K(m)) 34- fold. Deletion of F137, delta 137, the looped out residue in the bulge, also destabilizes E. coli DHFR by 2.8 kcal/mol but only decreases catalytic efficiency threefold. Concurrent deletion of F137 and mutation of, V136 to proline to try and maintain the strand twist associated with the beta-bulge decreases protein stability by 3.4 kcal/mol and decreases catalytic efficiency 84-fold. These insertion/deletion mutations were also constructed in a D27S DHFR background. The D27S mutation has been described previously and proposed to remove the catalytic acid from the active site. The delta 137 mutation partially suppresses the effect of the D27S mutation as it decreases the K(m) for substrate, dihydrofolate, twofold. Non-additive effects are observed for the insertion/deletion mutations in wild-type versus D27S DHFR backgrounds, consistent with structural changes.   相似文献   

9.
Trichoderma reesei cellobiohydrolase II (CBHII) is an exoglucanasecleaving primarily cellobiose units from the non-reducing endof cellulose chains. The ß-l,4 glycosidic bond iscleaved by acid catalysis with an aspartic acid, D221, as thelikely proton donor, and another aspartate, D175, probably ensuringits protonation and stabilizing charged reaction intermediates.The catalytic base has not yet been identified experimentally.The refined crystal structure of CBHII also shows a tyrosineresidue, Y169, located close enough to the scissile bond tobe involved in catalysis. The role of this residue has beenstudied by introducing a mutation Y169F, and analysing the kineticand binding behaviour of the mutated CBHII. The crystal structureof the mutated enzyme was determined to 2.0 Å resolutionshowing no changes when compared with the structure of nativeCBHII. However, the association constants of the mutant enzymefor cellobiose and cellotriose are increased threefold and for4-methylumbelliferyl cellobioside over 50-fold. The catalyticconstants towards cellotriose and cellotetraose are four timeslower for the mutant. These data suggest that Y169, on interactingwith a glucose ring entering the second subsite in a narrowtunnel, helps to distort the glucose ring into a more reactiveconformation. In addition, a change in the pH activity profilewas observed. This indicates that Y169 may have asecond rolein the catalysis, namely to affect the protonation state ofthe active site carboxylates, D175 and D221.  相似文献   

10.
A lipase from Pseudomonas aeruginosa was subjected to directed evolution for increased amidase activity to probe the catalytic mechanism of serine hydrolases for the hydrolysis of amides. Random mutagenesis combined with saturation mutagenesis for all the amino acid residues at the substrate-binding site successfully identified the mutation at the residue 252 next to the catalytic H251 as a hot spot for selectively increasing the amidase activity of the lipase. The saturation mutagenesis targeted for the oxyanion hole (M16 and H83) gave no positive results. The substitutions of Met or Phe for Leu252 significantly increased the amidase activity toward N-(2-naphthyl)oleamide (2), whereas the esterase activity toward structurally similar 2-naphthyl oleate (1) was not affected by the substitution. The triple mutant F207S/A213D/M252F (Sat252) exhibited amidase activity (k(cat)/K(m)) 28-fold higher than that of the wild-type lipase. Kinetic analysis of Sat252 and its parental clone 10F12 revealed that the amidase activity was increased by the increase in the catalytic efficiency (k(cat)). The increase in k(cat) suggested the importance of the leaving group protonation by the catalytic His during the break down of the tetrahedral intermediate in the hydrolysis of amides.  相似文献   

11.
Nine single amino add mutations in the active site of Aspergillusawamori glucoamylase were made by cassette mutagenesis to alterthe pH dependence of the enzyme and to determine possible functionsof the mutated residues. The Glul79-Asp mutation expressed inyeast led to a very large decrease in kcat but to no changein Km, verifying this residue's catalytic function. Aspl76-Gluand Glul80-Asp mutations affected Km a more than kcat, implyingthat Aspl76 and Glul80 are involved in substrate binding orstructural integrity. The Leul77-Asp mutation decreased kcatonly moderately, probably by changing the position of the generalacid catalytic group, and did not affect Km. The Trpl78-Aspmutation greatly decreased kcat while increasing Km, showingthe importance of Trpl78 in the active site. Vall81-Asp andAsnl82-Asp mutations changed kinetk values little, suggestingthat Vall81 and Asnl82 are of minor catalytic and structuralimportance. Finally, insertions of Asp or Gly between residues176 and 177 resulted in almost complete loss of activity, probablycaused by destruction of the active site structure. No largechanges in pH dependence occurred in those mutations where kineticvalues could be determined, in spite of the increase in mostcases of the total negative charge. Increases in activationenergy of maltoheptaose hydrolysis in most of the mutant glucoamylasessuggested cleavage of individual hydrogen bonds in enzyme-substratecomplexes.  相似文献   

12.
The aspartic proteinase chymosin exhibits a local network ofhydrogen bonds involving the active site aspartates and surroundingresidues which may have an influence on the rate and optimalpH of substrate cleavage. We have introduced into chymosin Bthe following substitutions: Asp304 to Ala (D304A), Thr218 toAla (T218A) and Gly244 to Asp (G244D, chymosin A), using oligonucleotide-directedmutagenesis. Kinetic analysis of these active mutants showsshifts in their pH optima to 4.4 D304A, 4.2 T218A and 4.0 G244Dcompared with 3.8 for chymosin B using a synthetic octapeptidesubstrate. The upward shift of the D304A and T218A may be dueto the loss of hydrogen bond interactions indirectly affectingthe catalytic aspartates 32 and 215. The G244D mutation whichis in a flexible loop on the surface of the enzyme may alterthe conformation of the specificity pockets on the prime sideof the scissile bond.  相似文献   

13.
Molecular dynamics simulations of triosephosphate isomerase(TIM) and of some active site TIM mutants were performed inan attempt to elucidate possible interactions important forcatalytic activity and binding. A variety of active site residuesin TIM have been altered, resulting in all cases in decreasesin catalytic activity. Second-site suppressor mutants were characterizedfor two of these active site mutants. The pseudorevertants haveincreased activity compared to the single mutant from whichthey were derived and, surprisingly, in both cases the increasehi activity is a result of the replacement of an active siteserine for proline. We performed simulations of wild-type TIMand the active site mutants with the substrate dihydroxyacetonephosphate bound both non-covalently and covalently. The noncovalentcomplexes were used to examine interactions important to bindingwhile the covalent complexes are models of the transition statestructure for enolization, which is the rate-determining stepfor the mutants. The difference between these two states, then,is related to the catalytic activity. We found various protein-substrateinteractions that unproved in the noncovalent mutant complexes,which correlates with the experimentally observed increase inbinding affinity upon mutation. In the covalent complexes weobserved improved electrostatic stabilization of the transitionstate upon introduction of Pro, which is also consistent withthe experimental data. Our simulations reproduce the highlyco-operative nature of the interactions in the active site andsuggest that this approach may be useful for identifying particularlypromising sites for mutation.  相似文献   

14.
The previously laboratory-evolved cytochrome P450 2B1 quadruple mutant V183L/F202L/L209A/S334P (QM), which showed enhanced H(2)O(2)-mediated substrate oxidation, has now been shown to exhibit a >3.0-fold decrease in K(m,HOOH) for 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) O-deethylation compared with the parental enzyme L209A. Subsequently, a streamlined random mutagenesis and a high-throughput screening method were developed using QM to screen and select mutants with enhanced tolerance of catalytic activity to temperature and dimethyl sulfoxide (DMSO). Upon screening >3000 colonies, we identified QM/L295H and QM/K236I/D257N with enhanced catalytic tolerance to temperature and DMSO. QM/L295H exhibited higher activity than QM at a broad range of temperatures (35-55 degrees C) and maintained approximately 1.4-fold higher activity than QM at 45 degrees C for 6 h. In addition, QM/L295H showed a significant increase in T(m,app) compared with L209A. QM/L295H and QM/K236I/D257N exhibited higher activity than QM at a broad range of DMSO concentrations (2.5-15%). Furthermore, QM/K236I/D257N/L295H was constructed by combining QM/K236I/D257N with L295H using site-directed mutagenesis and exhibited a >2-fold higher activity than QM at nearly the entire range of DMSO concentrations. In conclusion, in addition to engineering mammalian cytochromes P450 for enhanced activity, directed evolution can also be used to optimize catalytic tolerance to temperature and organic solvent.  相似文献   

15.
UDP-GalNAc:polypeptide alphaN-acetylgalactosaminyltransferases (ppGaNTases) transfer GalNAc from UDP-GalNAc to Ser or Thr. Structural features underlying their enzymatic activity and their specificity are still unidentified. In order to get some insight into the donor substrate recognition, we used a molecular modelling approach on a portion of the catalytic site of the bovine ppGaNTase-T1. Fold recognition methods identified as appropriate templates the bovine alpha1,3galactosyltransferase and the human alpha1,3N-acetylgalactosaminyltransferase. A model of the ppGaNTase-T1 nucleotide-sugar binding site was built into which the UDP-GalNAc and the Mn2+ cation were docked. UDP-GalNAc fits best in a conformation where the GalNAc is folded back under the phosphates and is maintained in that special conformation through hydrogen bonds with R193. The ribose is found in van der Waals contacts with F124 and L189. The uracil is involved in a stacking interaction with W129 and forms a hydrogen bond with N126. The Mn2+ is found in coordination both with the phosphates of UDP and the DXH motif of the enzyme. Amino acids in contact with UDP-GalNAc in the model have been mutated and the corresponding soluble forms of the enzyme expressed in yeast. Their kinetic constants confirm the importance of these amino acids in donor substrate interactions.  相似文献   

16.
Two refined crystal structures of aspartate aminotransferasefrom E.coli are reported. The wild type enzyme is in the pyridoxalphosphate (PLP) form and its structure has been determined to2.4 Å resolution, refined to an R-factor of 23.2%. Thestructure of the Arg292Asp mutant has been determined at 2.8Å resolution, refined to an R–factor of 20.3%. Thewild type and mutant crystals are isomorphous and the two structuresare very similar, with only minor changes in positions of importantactive site residues. As residue Arg292 is primarily responsiblefor the substrate charge specificity in the wild type enzyme,the mutant containing a charge reversal at this position mightbe expected to catalyze transamination of arginine as efficientlyas the wild type enzyme effects transamination of aspartate[Cronin,C.N. and Kirsch,J.F. (1988) Biochemistry, 27, 4572–4579].This mutant does in fact prefer arginine over aspartate as asubstrate, however, the rate of catalysis is much slower thanthat of the wild type enzyme with its physiological substrate,aspartate. A comparison of these two structures indicates thatthe poorer catalytic efficiency of R292D, when presented witharginine, is not due to a gross conformational difference, butis rather a consequence of both small side chain and main chainreorientations and the pre–existing active site polarenvironment, which greatly favors the wild type ion pair interaction.  相似文献   

17.
The crystallization of TNF-alpha converting enzyme (TACE) has been useful in understanding the structure-activity relationships of new chemical entities. However, the propensity of TACE to undergo autoproteolysis has made enzyme handling difficult and impeded the identification of inhibitor soakable crystal forms. The autoproteolysis of TACE was found to be specific (Y352-V353) and occurred within a flexible loop that is in close proximity to the P-side of the active site. The rate of autoproteolysis was found to be proportional to the concentration of TACE, suggesting a bimolecular reaction mechanism. A limited specificity study of the S(1)' subsite was conducted using surrogate peptides and suggested substitutions that would stabilize the proteolysis of the loop at positions Y352-V353. Two mutant proteases (V353G and V353S) were generated and proved to be highly resistant to autoproteolysis. The kinetics of the more resistant mutant (V353G) and wild-type TACE were compared and demonstrated virtually identical IC(50) values for a panel of competitive inhibitors. However, the k(cat)/K(m) of the mutant for a larger substrate (P6 - P(6)') was approximately 5-fold lower than that for the wild-type enzyme. Comparison of the complexed wild-type and mutant structures indicated a subtle shift in a peripheral P-side loop (comprising the mutation site) that may be involved in substrate binding/turnover and might explain the mild kinetic difference. The characterization of this stabilized form of TACE has yielded an enzyme with similar native kinetic properties and identified a novel crystal form that is suitable for inhibitor soaking and structure determination.  相似文献   

18.
The catalytic triad of the neutral lipase from Humicola lanuginosais buried by a short helix under aqueous conditions renderingthe enzyme inactive. Upon adsorption to a lipid substrate interfacethis helix is displaced, thereby exposing the active site (interfacialactivation). By covalently linking inhibitors to the activeserine, it is possible to crystallize the enzyme in an interfaciallyactivated state. Two such structures are reported here whichmimic the tetrahedral transition states of lipolysis. To date,no crystal structures of a lipase–triglyceride complexexist for this enzyme. Therefore, possible interactions betweenthis lipase and its substrate have been analysed through molecularmodelling.  相似文献   

19.
We have identified a P450(cam) mutation, L244A, that mitigates the affinity for imidazole and substituted imidazoles while maintaining a high affinity for the natural substrate camphor. The P450(cam) L244A crystal structure solved in the absence of any ligand reveals that the I-helix is displaced inwards by over 1 A in response to the cavity created by the change from leucine to alanine. Furthermore, the crystal structures of imidazole-bound P450(cam) and the 1-methylimidazole-bound P450(cam) L244A mutant reveal that the ligands have distinct binding modes in the two proteins. Whereas in wild-type P450(cam) the imidazole coordinates to the iron in an orientation roughly perpendicular to the plane of the heme, in the L244A mutant the rearranged I helix, and specifically residue Val247, forces the imidazole into an orientation almost parallel to the heme that impairs its ability to coordinate to the heme iron. As a result, the imidazole is much more weakly bound to the mutant than it is to the wild-type enzyme. Despite the constriction of the active site by the mutation, previous work with the L244A mutant has shown that it oxidizes larger substrates than the wild-type enzyme. This paradoxical situation, in which a mutation that nominally increases the active site cavity appears to decrease it, suggests that the mutation actually increases the active site maleability, allowing it to better expand to oxidize larger substrates.  相似文献   

20.
We have applied a global approach to enzyme active site exploration, where multiple mutations were introduced combinatorially at the active site of Type II R67 dihydrofolate reductase (R67 DHFR), creating numerous new active site environments within a constant framework. By this approach, we combinatorially modified all 16 principal amino acids that constitute the active site of this enzyme. This approach is fundamentally different from active site point mutation in that the native active site context is no longer accounted for. Among the 1536 combinatorially mutated active site variants of R67 DHFR we created, we selected and kinetically characterized three variants with highly altered active site compositions. We determined that they are of high fitness, as defined by a complex function consisting jointly of catalytic activity and resistance to trimethoprim. The k(cat) and K(M) values were similar to those for the native enzyme. The favourable Delta(DeltaG) values obtained (ranging from -0.72 to -1.08 kcal/mol) suggest that, despite their complex mutational pattern, no fundamental change in the catalytic mechanism has occurred. We illustrate that combinatorial active site mutagenesis can allow for the creation of compensatory mutations that could not be predicted and thus provides a route for more extensive exploration of functional sequence space than is allowed by point mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号