首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 139 毫秒
1.
刘满华  董洪达  马传平 《电焊机》2015,45(4):170-173
采用X射线衍射法对转向架用P355NL1钢对接接头的残余应力进行了测试。研究T IG重熔处理对单面焊双面成型和封底焊对接接头残余应力的影响。结果表明,TIG重熔处理对降低单面焊双面成型接头焊趾处纵向残余应力有显著影响,但会提高封底焊接头焊缝和焊趾的纵向残余应力。单面焊双面成型接头焊态横向残余应力值总体大于封底焊焊态接头横向残余应力。焊趾T IG重熔增加了单面焊双面成型对接接头焊趾区域横向压应力值,但对封底焊接头焊趾处横向残余应力没有影响。  相似文献   

2.
借助有限元软件研究了高强钢对接接头中焊接残余应力的调匀情况.结果表明,因母材塑性储备不足,所有接头焊后横向、纵向拉伸峰值应力均在焊接残余应力的基础上不断增加,但接头各区域应力增速不同,最终残余应力均未完全调匀.低匹配静载ELCC接头高塑性、低屈强比的盖面焊道位于高值残余应力所在的焊缝及近缝区母材表面并分担载荷,使该区应力增速放缓,故其残余应力调匀能力优于等匹配接头.考虑焊接残余应力的ELCC接头静载失效更可能发生在母材区,这与ELCC接头的设计目标相符.明确了静载ELCC设计可以忽略焊接残余应力的影响.  相似文献   

3.
随焊冲击碾压整形(weld shaping with trailing impact rolling,WSTIR)是一种能够降低应力变形、提高承载能力的随焊整形新方法.分别对原始焊态的低匹配等承载接头与随焊冲击碾压整形的低匹配等承载接头进行了硬度试验和残余应力试验.结果表明,随焊整形等承载接头焊缝表面、焊趾处表面的硬度显著高于原始焊态等承载接头的硬度,说明随焊冲击碾压整形对接头承载的关键区域有加工硬化的效果;随焊整形低匹配等承载接头各点的纵向和横向残余应力明显低于原始焊态等承载接头相应位置的纵向和横向残余应力,甚至在随焊整形接头的焊缝中心以及焊趾附近纵向均出现了残余压应力,残余压应力的引入必然能显著地提高低匹配接头承载能力.  相似文献   

4.
针对高强钢低匹配的横向对接接头形状设计,以最大限度提高接头静载承载能力和疲劳强度为目标,采用有限元计算的方法,考察了焊缝余高、焊趾过渡圆弧半径、盖面焊道宽度、板厚等几何参数对焊趾和焊根处应力集中的影响,回归分析得出的焊趾和焊根处的应力集中系数的经验方程式,对高强钢低匹配对接接头设计具有指导意义.  相似文献   

5.
弹性阶段以提高低匹配接头弯曲承载能力为目标,基于有限单元法针对X形坡口低匹配对接接头三点弯曲形状设计,从材料力学方法角度出发,考察了双侧余高对称时低匹配对接接头的焊缝余高、盖面焊道宽度、焊趾过渡圆弧半径等形状参数对三个危险区弯曲应力集中系数的影响.结果表明,对母材与焊缝交界处突变区与焊缝底部中心区的影响规律为焊缝余高影响最大,盖面焊道宽度影响次之,焊趾圆弧半径影响最小;对焊趾部位影响规律为盖面焊道宽度的影响较大,焊趾圆弧半径和焊缝余高影响均较小.选择合适的形状参数可以提高低匹配接头弯曲承载能力.  相似文献   

6.
基于有限单元法针对含中心裂纹的低匹配对接接头形状设计,以最大限度提高接头的抗断能力为目标,从断裂力学角度出发,考察了含中心裂纹的低匹配对接接头的焊缝余高高度、盖面焊道宽度、焊趾过渡圆弧半径等形状参数对其形状因子的影响.结果表明,焊缝余高高度对含中心裂纹的低匹配对接接头形状因子影响最为显著,盖面焊道宽度的影响次之,焊趾过渡圆弧半径的影响最小.选择合适的形状参数可以提高含中心裂纹低匹配对接接头的抗断能力.  相似文献   

7.
采用有限元方法研究了焊后拉伸条件下高强度钢等匹配和低匹配对接接头内部应力的变化情况。结果表明,焊后横向和纵向拉伸载荷增至临界失效载荷期间,等匹配和低匹配接头的焊缝区和母材区应力均一直持续增加,但焊缝及近缝母材区应力在焊接残余应力基础上的增加较远端母材区缓慢;最终近缝母材区的应力明显高于远端母材区,未表现出内应力完全调匀的特征;这意味着由于焊接残余应力的存在,高强度钢宽板等匹配焊接结构的静载强度可能略有损失,而高强度钢宽板低匹配焊接结构更将在焊缝低强的影响下损失更大的静载强度。  相似文献   

8.
采用X射线衍射法测量100 mm TC4钛合金电子束焊接头表面残余应力分布,研究焊后热处理对接头残余应力的影响。结果表明:上下表面残余应力峰值均位于热影响区附近;上表面纵向与横向残余拉应力峰值分别为338 MPa和401 MPa,为母材屈服强度的39%和47%;下表面纵向与横向残余拉应力峰值分别为323 MPa和372 MPa,约为母材屈服强度的37%和43%;接头经过600℃×2 h焊后热处理,残余应力降低,但在上下表面呈现不同效果,上表面横向和纵向残余应力水平都有一定程度降低,部分位置纵向残余应力由拉应力状态转变为压应力状态,下表面纵向残余应力消除效果明显,部分位置呈现压应力状态,下表面横向残余余力消除效果不明显。  相似文献   

9.
采用喷砂对铝合金车体用6082铝合金进行了表面处理。采用X射线衍射法测试并对比分析对接、搭接和十字焊接接头喷砂处理前后的残余应力。结果表明,喷砂处理前,对接、搭接和十字焊接接头的纵向残余应力均呈双峰状分布,最大残余应力出现在焊趾附近区域,而横向残余应力呈多峰状分布;喷砂处理后,其纵向和横向应力均呈现为压应力状态,并且应力跨度显著减小,应力分布更均匀。残余压应力的存在可以有效抑制表面裂纹的萌生,提高其疲劳强度和延长使用寿命。  相似文献   

10.
采用YAG激光对2 mm厚SUS304不锈钢薄板T型接头进行焊接,用小孔释放法对其残余应力进行测试,并分析了线能量对残余应力分布规律的影响.研究结果表明:不锈钢激光焊接T型接头纵向残余拉伸应力约为120~140 MPa,而横向残余拉伸应力只有50~60 MPa.激光焊接线能量增加时,纵向残余拉应力峰值降低,而横向残余应力峰值随着焊接线能量的增加而变大.T型接头残余应力总体分布趋势与对接接头残余应力分布规律类似.  相似文献   

11.
Ultrasonic impact treatment (UIT) is a relatively novel technique applied to the toe of welded joints to improve the fatigue life by changing the weld geometry and the residual stress state. In this study, the stress relaxation due to ultrasonic impact treatment is investigated on a six pass welded high strength quenched and tempered steel section. Stress measurements in two orthogonal directions were conducted by energy dispersive synchrotron X-ray diffraction. Results show that the application of only ultrasound to a welded component re-distributes the residual stresses more uniformly, while mechanical impacts in combination with ultrasound is an effective way to release the residual stresses. After welding, diffraction peak broadening due to the lattice distortion, characterised by the full width at half maximum (FWHM), is observed in the region of the weld toes. Ultrasonic impact treatment reduces the FWHM at these locations.  相似文献   

12.
New peening technology is proposed to improve the fatigue strength of welded joints. By using this technology, compressive residual stress is introduced at weld toe by the developed peening procedure which plastic deformation is only applied to the base material near the weld toe. In this study, improvement mechanism of fatigue strength of weld joints by hammer peening on base metal was clarified by FEA. It was clarified that increasing of stress at weld toe is controlled by depression formed near the weld toe. Not only compressive residual stress at weld toe but also decreasing stress concentration at weld toe by plastic deformation on base metal was indicated as the factor of improving fatigue strength of weld joints.  相似文献   

13.
In this paper, welding residual stress in socket weld of 304L stainless steel pipe was investigated using numerical simulation and validated by X-ray stress measurement. From the simulation results, the maximum tensile residual stresses were located at weld root and weld toe on both sides of the weld along pipe, which led to the fatigue failure. Pre-bevelling and low transformation temperature (LTT) dressing could decrease tensile residual stress both in hoop and axial direction at weld root and weld toe. After LTT dressing, compressive residual stress was generated throughout weld toe. Compressive stress can delay fatigue crack initiation and propagation. Therefore, pre-bevelling and LTT dressing can improve the fatigue life of socket weld.  相似文献   

14.
Austenitic alloy weldments in nuclear systems may be subject to stress- corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x- ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside- diameter surface of a simulated Alloy 600 penetration J- welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line- broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside- diameter surface in a narrow region adjacent to the weld heat- affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding.  相似文献   

15.
超声冲击对焊接结构残余应力的影响   总被引:11,自引:6,他引:11       下载免费PDF全文
以Q345钢结构箱型柱为对象,研究了超声冲击工艺对焊接残余应力的影响。对电渣焊和埋弧焊两种焊缝进行了超声冲击试验,其中埋弧焊焊缝采用了全覆盖冲击和焊趾冲击两种冲击工艺。残余应力测量表明,采用冲击工艺,可以在焊缝表面一定深度(小于3mm)下产生压应力,最高测得-134MPa;焊趾冲击不但使焊趾表面产生压应力,也降低了焊缝的残余应力。对非熔透埋弧焊和熔透埋弧焊焊缝的测量结果显示,在盲孔法测量的深度范围内,超声冲击可降低焊缝最大主应力约34%~55%。  相似文献   

16.
Tensile residual stresses at the surface of welded components are known to compromise fatigue resistance through the accelerated initiation of microcracks, especially at the weld toe. Inducement of compression in these regions is a common technique employed to enhance fatigue performance. Transformation plasticity has been established as a viable method to generate such compressive residual stresses in steel welds and exploits the phase transformation in welding filler alloys that transform at low temperature to compensate for accumulated thermal contraction strains. Neutron and X-ray diffraction have been used to determine the stress profiles that exist across the surface of plates welded with low transformation temperature welding alloys, with a particular focus on the stress at the weld toe. For the first time, near surface neutron diffraction data have shown the extent of local stress variation at the critical, fusion boundary location. Compression was evident for the three measurement orientations at the fusion boundaries. Compressive longitudinal residual stresses and tensile transverse stresses were measured in the weld metal.  相似文献   

17.
超声冲击对MB8镁合金对接接头疲劳性能的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
采用HJ-Ⅲ型超声冲击设备对MB8镁合金对接接头焊趾区域进行冲击处理.利用EHF-EM200K2-070-1A电液伺服疲劳试验机对超声冲击前后的MB8镁合金对接接头进行疲劳对比试验.采用光学显微镜和高分辨率的透射电镜对超声冲击后的MB8镁合金对接接头的表层组织进行了分析.结果表明,在试验循环基数为2×106周次的条件下,超声冲击态接头的疲劳强度为52.8 MPa,比焊态试样的疲劳强度提高了37.5%,在同等应力水平下,接头的疲劳寿命提高了58~65倍.超声冲击后,焊趾处的应力集中程度降低,焊址及附近区域发生明显塑性变形,变形层厚度大约为70 μm,并在焊趾表面获得了纳米晶组织,同时把焊接残余拉应力转变为压缩应力.超声冲击可以大幅度地提高MB8镁合金焊接接头的疲劳寿命.  相似文献   

18.
Abstract

This paper examines the effect of three friction stir welding process parameters on the residual stresses, hardness and distortion for butt welded aluminium–lithium AA2199 alloy, a novel, low density high strength alloy with potential in the aerospace sector. A systematic set of nine trial welds is examined at different tool rotation and traverse speeds as well as tool downforces. The tensile residual stresses (~50% of parent material yield strength) and the hardness drop in the weld line varied little with any of the friction stir welding process parameters. However, their breadth increased with rotation speed and downforce and decreased with increasing translation speed, which is consistent with increasing heat input. Weld distortion took the form of a saddle with the longitudinal bending distortion correlating strongly with the width of the tensile zone consistent with it being driven by the magnitude of the tensile buckling forces in the weld region.  相似文献   

19.
ABSTRACT

To understand the cause of compressive residual stress in welded joints, we analysed by numerical analysis the effect of welding pass sequence using low transformation temperature (LTT) welding materials on residual stress around the weld toe of boxing fillet welded joints. It was determined by numerical analysis that the produced compressive residual stress and the influence of the stiffeners are reduced in the equivalent position of the weld toe in a fillet welded joint because of the influence on the behaviour of the stiffener in the weld being due to residual stress distribution around the weld toe. The residual stress reduction method of extending the length of the welded bead and releasing the weld toe from the stiffener, similar to the concept of discarding a bead to reduce tensile residual stress, was effective in fillet welded joints. Numerical analysis of the relationship between residual stress around the weld toe and width of the weld bead in the bead-on-plate welding model clarified that compressive residual stress can be introduced around the weld toe by having a wide width weld bead. In addition, a fully penetrated welded joint was very effective for causing compressive residual stress around the weld toe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号