首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A neutron diffraction investigation has been carried out on the trigonal La2O3-type (hP5, space group , No. 164; also CaAl2Si2-type) YbMn2Sb2 intermetallic. A two-step synthesis route has been tried in this work, and successfully utilised to prepare single phase samples of this compound. This study shows that YbMn2Sb2 presents antiferromagnetic ordering below 120 K. The magnetic structure of this intermetallic consists of antiferromagnetically coupled magnetic moments of the manganese atoms, in the Mn1 (1/3, 2/3, ZMn) and Mn2 (2/3, 1/3, 1 − ZMn) sites; the direction of magnetic moments of manganese atoms forming a φ and a θ angle, respectively with the X- and the Z-axis. At 4 K the magnetic moment of the Mn1 atom is μMn = 3.6(1) μB, with φ = 0° and θ = 62(4)°, whilst the Mn2 atom has a magnetic moment μMn = 3.6(1) μB, with φ = 0° and θ = 242(4)°. On the other hand, in this compound no local moment was detected on the Yb site.  相似文献   

2.
Investigations were made by neutron diffraction on Zr6CoAs2-type (space group no. 189) Ho6−xErxMnBi2 solid solutions. The ferromagnetic ordering temperature decreases from Ho6MnBi2 (TC = 200(6) K) to Er6MnBi2 (TC = 100(4) K), whereas temperatures of ferrimagnetic (or antiferrimagnetic) ordering (TFerri and TAFerri) are found to have non-monotonic dependences on the content of Er: TFerri = 58(4) K for Ho6MnBi2, TFerri = 162(4) K for Ho4.5Er1.5MnBi2, TFerri = 150(4) K for Ho3Er3MnBi2, TAFerri = 78(4) K for Ho1.5Er4.5MnBi2 and TAFerri = 52(4) K for Er6MnBi2.

In these compounds, no local moment was detected on the manganese ion site, except for Ho1.5Er4.5MnBi2 and Er6MnBi2 compounds. The manganese magnetic moments (μMn) is 1.5μB and these are antiferromagnetically coupled with that of rare earth moments.  相似文献   


3.
Subsequent magnetic transitions were recently reported for the CeScSi-type RScGe (R = rare earth) equiatomic intermetallic compounds. The compounds TbScGe and NdScGe order ferromagnetically at TC = 216 K and TC = 200 K, respectively whereas PrScGe orders antiferromagnetically at TN = 140 K. In addition, PrScGe demonstrates two other magnetic transitions at TC1 = 88 K and TC2 = 80 K in an applied field of 5 kOe. An investigation by neutron diffraction has been now carried out on these phases in an attempt to solve the magnetic structures corresponding to each ordering, and in this article the results obtained are reported. Below the Curie point, the magnetic structure of TbScGe and NdScGe is collinear ferromagnetic. The magnetic moment of Tb atoms coincides with the Z-axis of CeScSi-type unit cell (MTb = 8.63μB at 2 K), whereas the magnetic moment of Nd atoms has the θ = 52(2)° angle with Z-axis (MNd = 3.53(2)μB at 2 K). Below the Néel temperature, TN = 140 K the magnetic structure of PrScGe consists of antiferromagnetic (0 0 2) rare-earth double layers with magnetic moments of the rare earth atoms collinearly ordered. The magnetic moments of Pr atoms (MPr = 1.72(3)μB at 100 K) have the θ = 62(2)° angle with the Z-axis. Between TC1 = 82 K and TC2 = 62 K the conversion of the commensurate antiferromagnetic collinear type structure to the ferrimagnetic collinear type structure with propagation vector K = [0, 0, 1/2] was observed: the magnetic moments of Pr double layers became sine modulated along the Z-axis. Below TC2 = 62 K the magnetic structure of PrScGe compound consists of ferrimagnetic (0 0 1/2) layers (amplitude of Pr magnetic moment MPr = 3.31(9)μB at 5 K).  相似文献   

4.
The crystal structure of intermetallic compound Gd6Cr4Al43 has been investigated by means of X-ray diffraction data (Ho6Mo4Al43 structure type, space group P63/mcm, Pearson symbol hP106, a = 10.9144(7) Å, c = 17.7361(13) Å).

SQUID magnetic measurements carried out for the title compound point to the existence of two antiferromagnetic phase transitions observed at TN1 = 19.0(1) K and TN2 = 6.8(1) K, respectively.  相似文献   


5.
Single crystals of UNi0.5Sb2 were investigated by means of Seebeck coefficient and Hall effect measurements in the temperature range 5–300 K. The results corroborated the occurrence of two magnetic phase transitions: from para- to antiferromagnetic state at TN = 161.5 K and a spin-reorientation near Tt = 64 K. The first-order character of the latter feature was proved by studying in detail the electrical resistivity and the magnetic susceptibility of single-crystalline UNi0.5Sb2 in the vicinity of Tt.  相似文献   

6.
Two polymorphs (I and II) of Ba3Sn2P4 have been found in the same preparative batch. Both compounds crystallize in the centrosymmetric monoclinic space group P21/c (#14, a = 7.8669(2) Å, b = 19.2378(5) Å, c = 7.8472(2) Å, β = 112.77(1)°, V = 1095.06(5) Å3, Z = 4, and R/wR = 0.0303/0.0710 for I; a = 7.8771(3) Å, b = 19.4099(7) Å, c = 7.7040(3) Å, β = 112.44(1)°, V = 1088.67(7) Å3, Z = 4, and R/wR = 0.0224/0.0415 for II). Both structures consist of one-dimensional chains separated by Ba2+ cations. The isolated chain consists of condensed ethane-like [Sn2P6] units. In polymorphs I and II, the condensation and connectivity of the [Sn2P6] units are quite different. While [Sn2P6] units form four- and six-membered rings in I, they form the five-membered rings in II. The electronic structure calculations indicate that semiconducting behavior is expected for both compounds.  相似文献   

7.
A new mixed-valence iron phosphate Na1.25Mg1.10Fe1.90(PO4)3 has been synthesized as single crystals by a flux technique and its structure has been refined from X-ray data to a residual R1 = 0.032. The compound crystallizes in the monoclinic space group C2/c with the parameters: a = 11.7831(3) Å, b = 12.4740(3) Å, c = 6.3761(2) Å, β = 113.643(2)° and Z = 4. The structure belongs to the alluaudite structural type, and thus it obeys to the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The X(2) and X(1) sites are occupied by sodium while the M(1) and M(2) sites feature a statistical distribution of iron and magnesium.

Additional information about the cation distribution has been extracted from a Mössbauer spectroscopy study which confirmed the mixed valency of the compound. A magnetic susceptibility study has also been undertaken and has shown the compound to be antiferromagnetic with a Neel temperature of about 35 K.  相似文献   


8.
Single crystals of the quaternary thiospinel Ag1.41(1)Cr1.47(5)Sn2.52(5)S8 have been obtained by heating stoichiometric mixtures of elemental metals and sulfur at 750 °C. Structural analysis by single crystal X-ray diffraction shows that the above phase crystallizes in the space group with a = 10.4142(3) Å (R1 = 0.0156 and wR2 = 0.0416). The Ag-deficiency has been confirmed by solving the structures of crystals prepared in different batches and was observed to vary slightly between crystals. Magnetic studies on a monophasic powder sample with a nominal composition of Ag1.63CrSn3S8 indicates anti-ferromagnetic ordering at low temperature. The high temperature susceptibility leads to a magnetic moment of 3.45 B.M. suggesting that chromium exists predominantly in a trivalent state.  相似文献   

9.
Magnetic properties and magnetocaloric effects of Pr6Co1.67Si3 compound have been investigated by magnetization measurements. The saturation moment at 5 K is found to be 10.7μB. The compound undergoes two magnetic transitions below Curie temperature TC = 48 K and shows a reversible second-order magnetic transition around TC. A magnetic entropy change ΔS = 6.9 J/(kg K) is observed for a magnetic field change from 0 to 5 T. The full width at half maximum of the ΔS peak is found to be about 38 K.  相似文献   

10.
The subsolidus phase relationships of ternary system Na2O–ZnO–WO3 have been investigated by X-ray diffraction (XRD) and differential thermal analyzer (DTA). All the samples were synthesized in the temperature range from 530 to 850 °C in air. There are one ternary compound and five binary compounds in the Na2O–ZnO–WO3 system, which can be divided into eight three-phase regions. The crystal structure of the ternary compound Na3.6Zn1.2(WO4)3 is determined by single-crystal structure analysis method. It belongs to triclinic system with space group and lattice constants a = 7.237 (5) Å, b = 9.172 (6) Å, c = 9.339 (6) Å and  = 94.920 (4)°, β = 105.772 (9)°, γ = 103.531 (8)°, Z = 2. DTA analyses indicate that the compound Na2WO4 is not suitable to be the flux for ZnO crystal growth below 1250 °C, since no liquidus was observed in the system before 1250 °C.  相似文献   

11.
The crystal and magnetic structures of the Laves phase compound NdCo2 in the temperature range from 9 to 300 K are determined by Rietveld refinement technique, using high-resolution neutron powder diffraction data. The compound crystallizes in space group above the magnetic ordering temperature TC (≈100 K), in space group I41/amd below TC and in space group Imma below the tetragonal–orthorhombic structural/magnetic transitions at TM ≈ 42 K. The assignment of the space groups to the crystal structures of NdCo2 in different temperature ranges complies with the reported Mössbauer studies. Detailed information of the crystal and magnetic structures of NdCo2 at different temperatures are reported.  相似文献   

12.
In our investigation of Co-rich alloys in the ternary U–Co–Sn system, we have identified three intermetallic compounds with composition UCo2Sn, UCo4Sn and UCo5Sn, respectively. The existence and the crystal structure of the first compound, already known in the literature, have been confirmed, while the latter two compounds have been identified for the first time. The crystal structure of these compounds was determined by X-ray diffraction methods, performed both on powders (all samples) and single crystals (UCo4Sn and UCo5Sn). The crystal data are as follows (lattice constants from Guinier powder patterns): UCo2Sn [UPd2Sn-type, orthorhombic, oP16-Pnma, a = 9.402(3), b = 4.321(1), c = 6.615(2) Å], UCo4Sn [MgCu4Sn-type, cubic, , a = 6.992(2) Å] and UCo5Sn [CeCu4.38In1.62-type, orthorhombic, oP56-Pnnm, a = 10.250(1), b = 16.012(2), c = 4.837(1) Å]. The physical properties of the compounds have been studied by electric transport (1.5–300 K), heat capacity (1.8–40 K) and magnetic measurements (1.8–300 K). The magnetisation data reveal weakly paramagnetic behaviour (with weak low temperature upturn due to parasitic impurity phases) in all the three alloys and absence of long-range magnetic ordering, despite the presence of uranium and a substantially high concentration of cobalt. The results for UCo2Sn are in agreement with earlier reports in the literature. The magnitudes of the coefficients of the linear term in the heat capacity and the T2 term in the low temperature resistivity track the room temperature magnetisation.  相似文献   

13.
The new ternary compound Dy1.2Fe4Si9.8 have been prepared and studied by means of X-ray powder diffraction technique and vibrating sample magnetometer. The ternary compound Dy1.2Fe4Si9.8 crystallizes in the hexagonal Er1.2Fe4Si9.8-type structure, space group P63/mmc (no. 194) with lattice parameters a = 0.39415(1) nm and c = 1.52771(3) nm. The crystal structural refinement of the compound Dy1.2Fe4Si9.8 has been performed by using Rietveld method. Lattice thermal expansion studies on the compound were carried out in the temperature range from 298 to 1013 K. The variation of the unit cell parameters shows that the unit cell parameters increase with the increase in temperature. The coefficients of average lattice thermal expansion along various axes in the temperature range from 298 to 1013 K are , and . The temperature dependence of the magnetization for the compound was also investigated in the range from 90 to 300 K. The experimentally determined magnetic effective paramagnetic moment is μeff = 11.3μB per formula unit (10.3μB per Dy atom).  相似文献   

14.
Copper spin dynamics in (Er0.5Y0.5)2Cu2O5 solid solution has been investigated by electron paramagnetic resonance (EPR) technique. The temperature dependence of the EPR integrated intensity of the resonance line has showed a pronounced maximum at low temperatures and has vanished at the transition to the antiferromagnetic ordering at TN = 11 K. The temperature at which the EPR integrated intensity reaches maximum was different for the heating and cooling runs. Study of the product of integrated intensity and temperature has allowed determination of the dominating interactions in a particular temperature range. A model used previously to describe the AFM modes in the antiferromagnetic state of Y2Cu2O5 was applied to explain the observed changes in the EPR spectra. A dimensional crossover from 2D to 3D magnetic behaviour was observed at 55 K and interpreted in terms of the spin correlation length.  相似文献   

15.
A new ternary compound Ce(Au,Sb)2, with a homogeneity range has been observed from X-ray powder diffraction of as cast alloys, a = 4.743–4.712 Å, c = 3.567–3.768 Å. Its crystal structure was investigated by X-ray diffraction from Ce(Au1−xSbx)2 (x = 0.266) single crystal: CAD-4 automatic diffractometer, Mo K radiation, a = 4.7256(6) Å, c = 3.6711(6) Å, P6/mmm space group, V = 70.997(17) Å3, Z = 1, ρ = 10.732 Mg/m3, μ = 76.369 mm−1, R1 = 0.0415, wR2 = 0.0793 for 99 reflections with I > 2σ(I0). The coordination polyhedron of X (X = 0.734Au + 0.266Sb) atom is a full-capped trigonal prism [XCe6X3X2]. Ce atom is coordinated by 14 atoms: [CeX12Ce2]. The compound is isotypic with UHg2 structure, a deformation derivative of AlB2 structure type. It forms isostructural compounds with La and Pr.  相似文献   

16.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

17.
《Intermetallics》2004,12(12):i76-1386
Single crystals of UNi1−xSb2 have been grown from an Sb-rich melt and studied by means of X-ray diffraction, magnetic and electrical transport measurements. Crystal structure refinements indicated significant deficiency on the transition metal sites in the tetragonal HfCuSi2-type unit cell, yielding the actual composition UNi0.5Sb2. The single crystals studied order antiferromagnetically below TN=161 K and exhibit another phase transition at Tt=60 K, presumably caused by a spin-reorientation. No crystal structure distortion could be detected at 10 K. Above TN the electrical resistivity is dominated by a Kondo effect, whereas at lower temperatures it shows a behavior characteristic of antiferromagnets. The overall magnetic and electrical transport properties of UNi0.5Sb2 are highly anisotropic both in the ordered and paramagnetic states.  相似文献   

18.
The new compound Li2VGeO5 with a layered structure has been synthesized at 580 °C via the hydrothermal method. The compound crystallizes in the space group P4/n of the tetragonal system with two formula units in a cell of dimensions a=6.5187(9) Å, c=4.5092(9) Å (T=298 K), V=191.61(5) Å3. The structure is composed of layers made of repeating [(VO5)(GeO4)]1− units. Li+ ions reside between the layers. The magnetic susceptibility data show an antiferromagnetic coupling below 5 K with C=0.47 emu K mol−1, and θ=−13 K with μeff=1.89μB for each Li2VGeO5 unit.  相似文献   

19.
The REFe6Sn4Ge2 (RE = Y, Gd–Er) compounds have been synthesized and studied by powder X-ray diffraction and magnetisation measurements. These compounds crystallize in the hexagonal HfFe6Ge6 structure although the parent ternary compounds REFe6X6 (X = Ge, Sn) display more complicated orthorhombic crystal structure. This evolution is discussed and interpreted on the basis of the relaxation of some RE–X contacts in the quaternary compounds. The iron sublattice order antiferromagnetically above room temperature (554 ≤ TN ≤ 560 K) while the paramagnetic RE compounds display a second transition at low temperature (7.3 ≤ Tt ≤ 42.7 K). The magnetisation versus field curves display a metamagnetic behaviour at 4.2 K. The corresponding value of the magnetisation suggests a non-collinear ordering of the RE sublattice.  相似文献   

20.
The magnetic properties of ThCr2Si2-type structure LaMn2Ge2 and LaMn2Si2 compounds have been reinvestigated by neutron diffraction experiments. The ferromagnetic ordering previously proposed to take place on the manganese sublattice is revised. At high temperature, both compounds are purely collinear antiferromagnets (not detected by magnetic measurements), characterized by a stacking of antiferromagnetic (001) Mn planes. Below Tc=310 and 325 K for LaMn2Ge2 and LaMn2Si2, respectively, both compounds exhibit an easy-axis ferromagnetic behaviour. However, the occurrence of a dominant antiferromagnetic component within the (001) Mn planes yields a conical magnetic structure for the germanide (cone semi-angle =58° at 2 K) and a canted magnetic structure for the silicide (φ=49°). At 2 K, the total Mn moments are about 3.0 and 2.4 μB for LaMn2Ge2 and LaMn2Si2, respectively. The results are compared with those of closely related RMnSi and RMnGe compounds and the magnetic properties of the ThCr2Si2-type structure RMn2X2 (XSi, Ge) compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号