首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Transport of newly synthesized MHC class II glycoproteins to endosomal Ag processing compartments is mediated by their association with the invariant chain (Ii). Targeting to these compartments is dependent upon recognition of leucine-based endo. somal/lysosomal targeting motifs in the Ii cytosolic domain. Ii, like many molecules that contain leucine-based endosomal targeting motifs, is phosphorylated in vivo. In this report we demonstrate that the cytosolic domain of the p35 Ii isoform is phosphorylated in class II Ii complexes isolated from human B lymphoblastoid cell lines or freshly obtained PBMC. Mutation of serine residue 6 or 8 prevents phosphorylation of Ii-p35 expressed in HeLa cells. Treatment of B lymphoblastoid cell lines with the serine/threonine kinase inhibitor staurosporine prevented Ii phosphorylation and significantly delayed trafficking of newly synthesized class II Ii complexes to endosomal Ag processing compartments. By contrast, staurosporine had no effect on the rate of transport of class I or class II glycoproteins through the Golgi apparatus and did not inhibit the delivery of the chimeric molecule Tac-DM, to endocytic compartments, suggesting that staurosporine does not nonspecifically inhibit protein transport to the endocytic pathway. These results demonstrate that phosphorylation regulates the efficient targeting of MHC class II Ii complexes to Ag processing compartments and strongly suggest that this effect is mediated by phosphorylation of the MHC class II-associated Ii chain.  相似文献   

2.
Binding of antigenic peptides to MHC class II (MHC-II) molecules occurs in the endocytic pathway. From previous studies in B lymphocytes, it is believed that most but not all of the newly synthesized MHC-II molecules are directly targeted from the trans-Golgi network to endosomal compartments. By using pulse-chase metabolic labeling followed by cell surface biotinylation, we show here that in contrast to an EBV-transformed B cell line and human monocytes, the majority of newly synthesized MHC-II molecules (at least 55 +/- 13%) are first routed to the plasma membrane of dendritic cells derived from human monocytes. They reach the cell surface in association with the invariant chain (Ii), a polypeptide known to target MHC-II to the endosomal/lysosomal system. Following rapid internalization and degradation of Ii, these alphabeta Ii complexes are converted into alphabeta-peptide complexes as shown by their SDS stability. These SDS-stable dimers appear as soon as 15 to 30 min after internalization of the alphabeta Ii complexes. More than 80% of alphabeta dimers originating from internalized alphabeta Ii complexes are progressively delivered to the cell surface within the next 2 h. Depolymerization of microtubules, which delays the transport to late endosomal compartments, did not affect the kinetics of conversion of surface alphbeta Ii into SDS-stable and -unstable alphabeta dimers. Altogether, these data suggest that newly liberated class II alphabeta heterodimers may bind peptides in different compartments along the endocytic pathway in dendritic cells derived from human monocytes.  相似文献   

3.
Considerable progress has been made in the field of major histocompatibility complex (MHC) class II-restricted antigen presentation. The analysis of mutant cell lines defective in antigen presentation revealed a central role for the nonclassical MHC class II molecule HLA-DM. Cell biological and biochemical characterization of HLA-DM provided deeper insight into the molecular mechanisms underlying the loading process: HLA-DM accumulates in acidic compartments, where it stabilizes classical class II molecules until a high-stability ligand occupies the class II peptide binding groove. Thus, HLA-DM prevents empty alpha beta dimers from functional inactivation at low endosomal/lysosomal pH in a chaperone-like fashion. In the presence of peptide ligands, HLA-DM acts as a catalyst for peptide loading by releasing CLIP, the residual invariant chain-derived fragment by which the invariant chain is associated with the class II molecules during transport from the endoplasmic reticulum to the loading compartments. Finally, there is accumulating evidence that HLA-DM functions as a peptide editor that removes low-stability ligands, thereby skewing the class II peptide repertoire toward high-stability alpha beta: peptide complexes presentable to T cells.  相似文献   

4.
The molecular mechanisms that regulate sorting of major histocompatibility complex (MHC) class II molecules into the endocytic pathway are poorly understood. For many proteins, access to endosomal compartments is regulated by cytosolically expressed sequences. We present evidence that a sequence in the lumenal domain of the MHC class II molecule regulates a very late event in class II biogenesis. Class II molecules containing single amino acid changes in the highly conserved 80-82 region of the beta chain were introduced into invariant chain (Ii)-negative fibroblasts with wild-type alpha chain, and the derived transfectants were analyzed biochemically. Using an endosomal isolation technique, we have quantified the level of class II molecules expressed in endocytic compartments and found that in the absence of Ii, approximately 15% of total cellular class II molecules can be isolated from endosomal compartments. Mutation at position 80 enhances this localization, while changes at positions 81 and 82 ablate class II expression in endosomal compartments. In addition, we have evaluated whether the induced changes in intracellular distribution of class II molecules were due to alterations in early biosynthetic events, indicative of misfolding of the molecules, or to modulation of later trafficking events more likely to be a consequence of the modulation of a specific transport event. Despite the dramatic effects on endosomal localization induced by the mutations, early biosynthetic events and maturation of class II were unaffected by the mutations. Collectively, our data argue that late trafficking events that control the ability of the class II molecule to access antigens is regulated by the 80-82 segment of the MHC class II beta chains.  相似文献   

5.
MHC class II expression was examined in macrophages infected with Mycobacterium tuberculosis. IFN-gamma increased the surface expression of class II molecules in THP-1 cells and this was markedly reduced in cells infected with M. tuberculosis. Despite this effect, steady state levels of HLA-DRalpha, HLA-DRbeta, and invariant (Ii) chains were equivalent in control and infected cells. Metabolic labeling combined with pulse-chase experiments and biochemical analysis showed that the majority of class II molecules in infected cells became resistant to endoglycosidase H, consistent with normal Golgi processing. However, results of intracellular staining and dual color confocal microscopy revealed a significant defect in transport of newly synthesized class II molecules through the endocytic compartment. Thus, compared with findings in control cells, class II molecules in infected cells colocalized to a minimal extent with a lysosomal-associated membrane protein-1+ endosomal compartment. In addition, in contrast to control cells, class II molecules in infected cells failed to colocalize with endocytosed BSA under conditions where this marker is known to label late endosomes, lysosomes, and the MHC class II compartment. Consistent with defective transport along the endocytic pathway, the maturation of SDS-stable class II alphabeta dimers--dependent upon removal of Ii chain and peptide loading of class II dimers in the MHC class II compartment--was markedly impaired in M. tuberculosis-infected cells. These findings indicate that defective transport and processing of class II molecules through the endosomal/lysosomal system is responsible for diminished cell surface expression of MHC class II molecules in cells infected with M. tuberculosis.  相似文献   

6.
Stimulation of CD4(+) helper T lymphocytes by antigen-presenting cells requires the degradation of exogenous antigens into antigenic peptides which associate with major histocompatibility complex (MHC) class II molecules in endosomal or lysosomal compartments. B lymphocytes mediate efficient antigen presentation first by capturing soluble antigens through clonally distributed antigen receptors (BCRs), composed of membrane immunoglobulin (Ig) associated with Ig-alpha/Ig-beta heterodimers which, second, target antigens to MHC class II-containing compartments. We report that antigen internalization and antigen targeting through the BCR or its Ig-alpha-associated subunit to newly synthesized class II lead to the presentation of a large spectrum of T cell epitopes, including some cryptic T cell epitopes. To further characterize the intracellular mechanisms of BCR-mediated antigen presentation, we used two complementary experimental approaches: mutational analysis of the Ig-alpha cytoplasmic tail, and overexpression in B cells of dominant negative syk mutants. Thus, we found that the syk tyrosine kinase, an effector of the BCR signal transduction pathway, is involved in the presentation of peptide- MHC class II complexes through antigen targeting by BCR subunits.  相似文献   

7.
In B cells, the non-classical human leukocyte antigens HLA-DO (DO) and HLA-DM (DM) are residents of lysosome-like organelles where they form tight complexes. DM catalyzes the removal of invariant chain-derived CLIP peptides from classical major histocompatibility complex (MHC) class II molecules, chaperones them until peptides are available for loading, and functions as a peptide editor. Here we show that DO preferentially promotes loading of MHC class II molecules that are dependent on the chaperone activity of DM, and influences editing in a positive way for some peptides and negatively for others. In acidic compartments, DO is engaged in DR-DM-DO complexes whose physiological relevance is indicated by the observation that at lysosomal pH DM-DO stabilizes empty class II molecules more efficiently than DM alone. Moreover, expression of DO in a melanoma cell line favors loading of high-stability peptides. Thus, DO appears to act as a co-chaperone of DM, thereby controlling the quality of antigenic peptides to be presented on the cell surface.  相似文献   

8.
Following biosynthesis, class II MHC molecules are transported through a lysosome-like compartment, where they acquire antigenic peptides for presentation to T cells at the cell surface. This compartment is characterized by the presence of HLA-DM, which catalyzes the peptide loading process. Here we report that the morphology and function of the class II loading compartment is affected in diseases with a phenotypic change in lysosome morphology. Swollen lysosomes are observed in cells from patients with the hereditary immunodeficiency Chediak-Higashi syndrome and in cells infected with Coxiella burnetii, the rickettsial organism that causes Q fever. In both disease states, we observed that HLA-DR and HLA-DM accumulate in enlarged intracellular compartments, which label with the lysosomal marker LAMP-1. The distribution of class I MHC molecules was not affected, localizing disease effects to the endocytic pathway. Thus, cellular mechanisms controlling lysosome biogenesis also affect formation of the class II loading compartment. Analysis of cell surface class II molecules revealed that their steady-state levels were not reduced on diseased cells. However, in both disease states, enhanced interaction between HLA-DR and HLA-DM was detected. In the Chediak-Higashi syndrome cells, this correlated with more efficient removal of the CLIP peptide. These findings suggest a mechanism for perturbation of Ag presentation by class II molecules and consequent immune deficiencies in both diseases.  相似文献   

9.
In APCs, MHC class II molecules (MHC class II) bind antigenic peptides after HLA-DM mediated removal of CLIP. To characterize intracellular sites of peptide loading in human B lymphoblastoid cell lines, we conducted immunoelectron microscopy studies with Abs recognizing MHC class II associated with CLIP or bound peptide, respectively, together with Abs to HLA-DM and endocytic markers. The distribution of these molecules indicates that peptide binding occurs in compartments with characteristics of normal late endosomes, and in compartments that show characteristics of late endosomes, but are not detectably accessed by endocytosed BSA-gold. The latter compartments may represent or give rise to recycling vesicles that deliver peptide-loaded class II molecules to the cell surface. In addition, we have compared cells in which HLA-DM and HLA-DR interaction is defective with cells in which this interaction is intact, and find that DM/DR interaction is not required for the proper localization of either molecule to peptide-loading compartments.  相似文献   

10.
HLA-DM (DM) is a non-classical major histocompatibility complex (MHC) class II molecule that interacts with classical MHC II molecules in acidic compartments. During this association DM is supposed to catalyze the release of invariant chain (II)-derived CLIP peptides thereby rendering the peptide binding groove accessible for antigenic peptide loading. However, in situations of peptide scarcity the fate of these DM:DR complexes is not known. We could show that DR molecules incubated at lysosomal pH in the absence of peptide rapidly undergo functional inactivation and aggregation. In the presence of DM, however, empty DR molecules were shown to be stabilised and kept receptive for peptide loading, with the degree of the stabilising effect of DM varying for different DR alleles. In addition, in lysosomal compartments a considerable fraction of DM was found to be stably associated with empty DR alpha beta dimers thereby preserving their functionality. Upon encounter with antigenic peptide the DM-associated DR molecules could be rapidly loaded, whereupon they did no longer bind to DM. Thus, DM seems to act as a dedicated class II-specific chaperone that rescues uncharged alpha beta dimers. In view of the suggested shortage of self-peptides in the loading compartment, empty class II molecules that are kept receptive for loading by the chaperone function of DM may enable the antigen processing system to respond promptly to the challenge by newly entering antigens.  相似文献   

11.
12.
Exogenous Ags may be presented by MHC class II molecules through two distinct pathways distinguished by their sensitivity to drugs that inhibit the protein synthesis. Using this approach, we previously showed that the subunits Ig-alpha and Ig-beta, associated to B cell Ag receptor, targeted Ags either to newly synthesized or to preexisting pools of MHC class II molecules, respectively. To further characterize these two Ag presentation pathways, we altered the intra-Golgi transport of newly synthesized MHC class II by stably overexpressing, in B cells, mutants of a small G protein involved in the intra-Golgi transport, Rab6. Overexpression of GTP-bound rab6 (Q72L) mutant proteins reduced the cell surface arrival of MHC class II molecules and consequently slowed down Ag presentation dependent upon newly synthesized class II molecules. In contrast, this mutant had no effect on Ag presentation dependent upon preexisting pools of class II molecules, and the overexpression of an inactive GDP-bound form of rab6 (T27N) did not affect any Ag presentation pathway. MHC class II-restricted Ag presentation pathways can therefore be distinguished by their sensitivity to the overexpression of proteins modifying the intracellular transport of newly synthesized class II molecules.  相似文献   

13.
The cellular mechanism regulating the binding of exogenous peptides to MHC class II molecule is still an object of controversy. In order to study the cellular requirements of peptide binding we have set up an indirect fluorescence assay that enables us to detect quantitatively peptide/MHC class II complexes on the cell surface of the mouse B lymphoma A20. The absence of binding on several MHC class II-negative cell lines and the inhibition of binding in the presence of competitor peptides or in the presence of a polyclonal serum against MHC class II molecules confirmed the specificity of the assay. A panel of pharmacological and physical agents was then used to determine the mechanism of this regulation. Binding was not significantly affected by vinblastine or cycloheximide and was affected only to a small extent by chloroquine or azide. In contrast to the long half-life previously reported for soluble complexes, we found that the half-life of a peptide/MHC class II complex expressed on A20 was shorter than 3 hr, suggesting that peptide binding might be regulated at the cellular level. The energy of activation of peptide binding, estimated from the temperature dependence of the rate of peptide binding, was decreased above 27 degrees C, suggesting that enhanced peptide binding to MHC class II molecules might depend on the fluidity of the cell membrane lipids.  相似文献   

14.
Ag presentation by APC to class II MHC-restricted T cells involves a sequence of events: 1) intracellular processing of protein Ag into immunogenic peptides, 2) specific binding of peptides to class II MHC molecules, and then 3) transport of the MHC-peptide complexes to the plasma membrane. The critical event in the activation of T cells by APC is the recognition of MHC-associated antigenic determinants by the TCR/CD3 complex. In this report we describe the isolation and characterization of a mutant APC with a defect in an intracellular process that results in its inability to form MHC-peptide complexes for recognition by T cells. The mutant APC cannot present many different protein Ag with both I-A and I-E molecules but is able to present processing-independent peptides. The functional defect in the mutant APC is not caused by either a decrease in expression or a structural mutation in class II MHC molecules. Further, there is no mutation in the invariant chain (li) and it displays a normal kinetics of association and dissociation from the class II MHC molecules during biosynthesis. Although the mutation is not in the genes encoding for the class II MHC molecules or li, the mutant APC expresses class II MHC molecules with distinct serological epitopes suggestive of an altered conformation. Pulse-chase experiments suggest that a conformational difference between I-Ad molecules of wild-type and mutant cells occurs after the class II molecules exit from the endoplasmic reticulum but while they are still associated with li. The mutant cell produces few compact (SDS-resistant) class II heterodimers. This mutant APC provides a tool for studying the cell biology of Ag processing and presentation.  相似文献   

15.
The endogenous major histocompatibility complex (MHC) class II presentation pathway allows biosynthesized, intracellular antigens access for presentation to MHC class II-restricted T cells. This pathway has been well documented in B cells and fibroblasts, but may not be universally available in all antigen-presenting cell types. This study compares the ability of different antigen-presenting cells, expressing endogenous C5 protein (fifth component of mouse complement) as a result of transfection, to present their biosynthesized C5 to MHC class II-restricted T cells. B cells and fibroblasts expressing C5 were able to present several epitopes of this protein with MHC class II molecules, whereas macrophages were unable to do so, but readily presented C5 from an extracellular source. However, macrophage presentation of endogenous C5 could be achieved when they were treated with low doses of the lysosomotropic agent ammonium chloride. In the presence of an inhibitor of autophagy, presentation of endogenous C5 was abrogated, indicating that biosynthesized C5 is shuttled into lysosomal compartments for degradation before making contact with MHC class II molecules. Taken together, this suggests that proteolytic activity in lysosomes of macrophages may be excessive, compared with fibroblasts and B cells, and destroys epitopes of the C5 protein before they can gain access to MHC class II molecules. Thus, there are inherent differences in presentation pathways between antigen-presenting cell types; this could reflect their specialized functions within the immune system with macrophages focussing preferentially on internalization, degradation, and presentation of extracellular material.  相似文献   

16.
The class II-associated invariant chain peptide (CLIP) region of invariant chain (Ii) is believed to play a critical role in the assembly and transport of MHC class II alphabetaIi complexes through its interaction with the class II peptide-binding site. The role of the CLIP sequence was investigated by using mutant Ii molecules with altered affinity for the DR1 peptide-binding site. Both high- and low-affinity mutants were observed to efficiently assemble with DR1 and mediate transport to endosomal compartments in COS cell transfectants. Using N- and C-terminal truncations, a region adjacent to CLIP within Ii(103-118) was identified that can complement loss of affinity for the peptide-binding site in mediating efficient assembly of alphabetaIi. A C-terminal fragment completely lacking the CLIP region, Ii(103-216), was observed binding stably to class II molecules in immunoprecipitation studies and experiments with purified proteins. The Ii(103-118) region was required for this binding, which occurs through interactions outside of the alphabeta peptide-binding groove. We conclude that strong interactions involving Ii(103-118) and other regions of Ii cooperate in the assembly of functional alphabetaIi under conditions where CLIP has little or no affinity for the class II peptide-binding site. Our results support the hypothesis that the CLIP sequence has evolved to avoid high-stability interactions with the peptide-binding sites of MHC class II molecules rather than as a promiscuous binder with moderate affinity for all class II molecules.  相似文献   

17.
B lymphocytes contain a novel population of endocytic vesicles involved in the transport of newly synthesized major histocompatibility complex (MHC) class II alpha beta chains and alpha beta peptide complexes to the cell surface. We now present evidence that these class II-enriched vesicles (CIIV) are also likely to be a site for the loading of immunogenic peptides onto MHC molecules. We used the serine protease inhibitor leupeptin to accumulate naturally occurring intermediates in the degradation of alpha beta-invariant chain complexes and to slow the intracellular transport of class II molecules. As expected, leupeptin caused an accumulation of Ii chain and class II molecules (I-A(d)) in endosomes and lysosomes. More importantly, however, it enhanced the selective accumulation of a 10-kD invariant chain fragment associated with sodium dodecyl sulfate (SDS)-labile (empty) alpha beta dimers in CIIV. This was followed by the dissociation of the 10-kD fragment, formation of SDS-stable (peptide-loaded) alpha beta dimers, and their subsequent appearance at the cell surface. Thus, CIIV are likely to serve as a specialized site, distinct from endosomes and lysosomes, that hosts the final steps in the dissociation of invariant chain from class II molecules and the loading of antigen-derived peptides onto newly synthesized alpha beta dimers.  相似文献   

18.
Hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus (PPV) VP2 capsid protein carrying a CD8+ or CD4+ T cell epitope. Immunization of mice with a single dose of these hybrid pseudo-particles, without adjuvant, induced strong cytotoxic T lymphocyte and T helper (Th) responses against the reporter epitope. The Th response was characterized by a Th1 phenotype. We also analyzed in vitro the uptake mechanism of these parvovirus-like particles and the processing requirements associated with presentation by MHC molecules. Although previously shown to be presented by MHC class I molecules, these particles also enter very efficiently the MHC class II endocytic pathway, and behave as conventional exogenous antigens. Indeed, the processing of chimeric PPV:VLP was performed in endosomal/lysosomal acidic vesicles and the presentation of the foreign epitope carried by these particles was sensitive to brefeldin A and cycloheximide, showing that the foreign peptide was loaded on nascent MHC class II molecules. These results give some indication of how PPV:VLP can be presented by MHC class I and class II molecules, and underscore the wide potency of such VLP system to deliver foreign antigens for vaccine design.  相似文献   

19.
20.
Invariant chain (Ii) associates with class II MHC molecules and is crucial for Ag presentation by class II molecules. A general explanation for how invariant chain (Ii) associates with polymorphic MHC class II molecules has been suggested by the crystallographic structure of CLIP (class II-associated Ii peptide) complexed with an HLA class II molecule, HLA-DR3. We show here that methionine residues at positions 93 and 99 in Ii are important in MHC class II-mediated Ag presentation, but function in an allele-dependent manner. Introduction of a Met-->Ala mutation at position 99 in Ii (M99AIi) impaired presentation of peptides derived from exogenous proteins by I-Ad and I-Au class II molecules. Mutating Met-->Ala in Ii at position 93 (M93AIi) abrogated presentation by I-Au molecules, but not by I-Ad. Impaired Ag presentation was associated with conformationally altered expression of I-A molecules on the surface of cells expressing mutated Ii. Cell surface CLIP staining and immunoprecipitation studies showed that both I-Ad and I-Au molecules were associated with an increased abundance of Ii peptides, CLIP, in cells expressing mutated Ii. These results show that methionine 93 and methionine 99 play an important physiologic role in Ii association with class II molecules by regulating release of CLIP from class II in the endocytic compartments to allow binding of cognate peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号