首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Decreased methotrexate (MTX) long-chain polyglutamate formation is associated with MTX resistance whereas high levels of MTX polyglutamate accumulation are found in the blasts of leukemia patients who respond to therapy and have improved outcome. The steady-state level of long-chain MTX polyglutamates depends on the balance of activities of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamates to MTX in a gamma-carboxyl linkage, and gamma-glutamyl hydrolase (GGH) or conjugase, which sequentially removes the terminal glutamate residue of MTX polyglutamates. FPGS and GGH activities as well as the formation of total and long-chain MTX polyglutamates were measured after incubation with [3H]MTX in 15 blast samples from patients with acute leukemias (myeloid and lymphoid). The ratio between GGH and FPGS activities was better at predicting the amount of polyglutamate accumulated in the 24-h [3H]MTX assay compared to the determination of either activity alone. The linear regression curve relating the relative levels of long-chain polyglutamates/total polyglutamates with the ratio of GGH/FPGS showed an r value of 0.81 (P < 0.001). These data suggest that the evaluation of both these enzymes at diagnosis may be used as a predictor of MTX polyglutamylation and therefore for response to MTX therapy and outcome.  相似文献   

2.
The effect of down-regulation of folylpoly-gamma-glutamate synthetase (FPGS) activity on intracellular reduced folate accumulation and cellular proliferation was examined, using an inducible antisense expression system in the human T-lymphoblastic leukemia cell line CCRF-CEM. FPGS catalyzes the addition of gamma-glutamyl residues to natural folates and classical antifolates, which results in their enhanced cellular retention and increased cytotoxicity. As such, this enzyme has become a focus as a potential anticancer drug target. However, direct evidence to support this concept has been elusive. Hence, a study was undertaken using an antisense-based expression system to down-regulate FPGS activity. This inducible expression system was used to demonstrate that lower FPGS activity can lead to substantially lower intracellular folate content, which coincides with suppression of thymidylate synthesis and inhibition of cellular proliferation.  相似文献   

3.
Synthesis of poly(gamma-glutamyl) metabolites of many antifolates, such as methotrexate (MTX), by folylpolyglutamate synthetase (FPGS) is often essential to their cytotoxic activity. FPGS expression in the MTX-sensitive human T-lymphoblastic leukemia cell line CCRF-CEM and a number of MTX-resistant sublines was previously investigated at the DNA, RNA, and activity levels. Using an FPGS peptide deduced from its cDNA sequence, a rabbit polyclonal antibody to FPGS has now been elicited, immunoaffinity purified, and used to quantitate FPGS protein expression by chemiluminescent Western immunoblot analysis. The antibody was used to determine the half-life of human FPGS protein (3.7 +/- 1.1 h) in parental CCRF-CEM cells. A subline resistant to MTX as a result of amplified dihydrofolate reductase expression shows no change in FPGS protein or activity relative to CCRF-CEM. An MTX transport-defective line, however, displays both higher FPGS protein and activity levels. For several sublines in which the only apparent mechanism of MTX resistance is decreased FPGS activity, the FPGS protein level is decreased proportionally. However, we previously showed that these sublines have the same gene copy number, restriction map, and mRNA size and levels as the parent. Evidently, in these MTX-resistant sublines the mRNA is poorly translated and/or the protein turns over more rapidly.  相似文献   

4.
The characteristics and mechanisms of hepatic transport of folates and antifolate cancer drugs, for example, methotrexate, have been studied in perfused liver, isolated hepatocytes (in both freshly isolated cells and in primary cell culture), and membrane vesicles isolated from the basolateral membrane. Both naturally occurring folates and antifolates are taken up by the perfused liver and secreted into bile by apparently active processes, since these compounds are concentrated in liver and bile compared with the perfusate. Transport of the naturally occurring folate 5-methyltetrahydrofolate in isolated hepatocytes and basolateral membrane vesicles is via cotransport with hydrogen ions, is electroneutral, and is inhibitable by other reduced folates and by methotrexate. Transport of methotrexate is by a multispecific anion carrier, is electrogenic, and is not inhibitable by reduced folates (e.g., 5-methyl- and 5-formyltetrahydrofolate). Thus, the hepatocyte has separate systems for uptake of the naturally occurring, reduced folates and for the 4-amino-substituted antifolates.  相似文献   

5.
Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-A resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Omega loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates.  相似文献   

6.
N alpha-(4-Amino-4-deoxy-10-methylpteroyl)-DL-4,4-difluoroornithi ne (AMPte-DL-4,4-F2Orn, 4) was synthesized and evaluated as an inhibitor of human folypoly-gamma-glutamate synthetase (FPGS), dihydrofolate reductase (DHFR), and cell growth. Synthesis of 4 involved the use of a protected form of DL-4,4-difluoroornithine 9 which was derived from DL-4,4-difluoroglutamic acid. Biological activities of 4 were compared directly to those of the corresponding nonfluorinated compound N alpha-(4-amino-4-deoxy-10-methylpteroyl)-L-ornithine (AMPte-L-Orn, 3). Although the fluorinated analogue is a potent inhibitor of DHFR, it is a poor inhibitor of FPGS. However, the compound is transported across the cell membrane and inhibits cell growth, presumably due to the inhibition of DHFR. The data obtained with the fluorinated analogue are in contrast to those of the corresponding nonfluorinated compound 3, which is a potent inhibitor of both FPGS and DHFR but shows very low cytotoxicity due to poor transport.  相似文献   

7.
ZD1694 (Tomudex; TDX) is a quinazoline antifolate that, when polyglutamated, is a potent inhibitor of thymidylate synthase (TS), the enzyme that converts dUMP to dTMP. Continuous exposure of MCF-7 breast and NCI H630 colon cells to TDX, with stepwise increases in TDX up to 2.0 microM, resulted in stably resistant cell lines (MCFTDX and H630TDX) that were highly resistant to TDX. Initial studies revealed 34-fold increase in TS protein levels in MCFTDX and a 52-fold increase in TS levels in H630TDX cell lines. Despite continued exposure of these cells to 2.0 microM TDX, TS protein and TS mRNA expression decreased to parental levels in H630TDX cells, whereas in MCFTDX cells TS mRNA expression and TS protein levels remained elevated. Southern blot analysis revealed a 20-fold TS gene amplification in the MCFTDX cell line. TDX uptake was 2-fold higher in resistant MCFTDX cells than in parental MCF-7 cells, whereas in H630TDX cells TDX uptake was 50-fold less than that observed in parental H630 cells. In contrast, no change in the transport of either leucovorin or methotrexate into H630TDX cells was noted when compared with the H630 parental cells. In H630TDX cells, folylpolyglutamate synthetase (FPGS) activity was 48-fold less compared to parent H630 cells; however, FPGS mRNA expression was similar in both lines. H630TDX cells were also highly resistant to ZD9331, a novel quinazoline TS inhibitor that does not require polyglutamation, suggesting that defective transport by the reduced folate carrier was also an important mechanism of resistance in these cells. In MCFTDX and H630TDX resistant cells, several mechanisms of resistance are apparent: one increased TS expression; the others evolved over time from increased TS expression to decreased FPGS levels and decreased TDX transport.  相似文献   

8.
The binding of the prototypical folate inhibitor of de novo purine synthesis, 5,10-dideazatetrahydrofolate (DDATHF), and its hexaglutamate to recombinant trifunctional mouse glycinamide ribonucleotide formyltransferase (rmGARFT) was studied by equilibrium dialysis and by steady-state kinetics using sensitive assays that allowed initial rate calculations. rmGARFT was expressed in insect cells infected with a recombinant baculovirus and purified by a two-step procedure that allowed production of about 25 mg of pure protein/L of culture. The binding of DDATHF to GARFT was approximately 50-fold tighter than previously reported, with Kd and Ki values of 2-9 nM, making the parent form of this antifolate a tight-binding inhibitor. The binding of the hexaglutamate of DDATHF to rmGARFT had Kd and Ki values of 0.1-0.3 nM, consistent with the view that polyglutamation enhances binding of antifolates to GARFT. Kinetic analyses using either mono- or hexaglutamate substrate did not yield different values for the Ki for the hexaglutamate form of DDATHF, in contradiction with previous reports. Both the folate substrate commonly used to study GARFT, 10-formyl-5,8-dideazafolate, and its hexaglutamate were found to have very low Km values, namely, 75 and 7.4 nM, respectively, and the folate reaction products for these substrates were equally potent inhibitors, results which modify the interpretation of previous kinetic experiments. The product analog DDATHF and beta-glycinamide ribonucleotide bound to enzyme equally well in the presence and absence of the other, an observation at variance with the concept that GARFT obeys an ordered sequential binding of the substrates. We conclude that the kinetics of mouse GARFT are most consistent with a random order of substrate binding, that both the inhibitor DDATHF and the folate substrate are tight-binding ligands, and that polyglutamate forms enhance the affinity of both substrate and inhibitor by an order of magnitude.  相似文献   

9.
Expression of certain variants of dihydrofolate reductase (DHFR) in mammalian cells protects them from methotrexate. Retroviral transfer of the gene for such a variant DHFR into hematopoietic cells might permit selection of modified cells in vivo by antifolate administration or alleviate antifolate-induced myelosuppression in patients receiving antifolate therapy. We examined protection of cells of the human lymphoblastoid line, CCRF-CEM, transduced with variants of mouse DHFR. In transduced cells selected with G418 but not with antifolate, the variant that had arginine substituted for leucine 22 did not protect against either methotrexate or trimetrexate; however, four other variants did offer protection, with the best having leucine 22 changed to tyrosine. Polyclonal cultures transduced with the different variants express DHFR at about the same level, but clones within each polyclonal population differ in DHFR expression levels and in resistance. These differences in expression were shown to reflect different integration sites for proviral DNA. Exposure to trimetrexate selects highly resistant clones, with high expression due to both high copy number and integration sites that are favorable for expression. Differences in the resistance of cultures expressing different variants at the same level are due to differences in the catalytic activity of the expressed DHFR, its affinity for antifolates, and its stability.  相似文献   

10.
The cytotoxicity of the antifolate inhibitors of de novo purine biosynthesis, lometrexol (LTX) and LY309887, can be abolished by hypoxanthine (HPX) salvage. The nucleoside transport inhibitor, dipyridamole (DP) can prevent HPX rescue from LTX growth inhibition in a cell line-specific manner. The studies described here have shown that, excluding colon and hematological malignancies, DP prevents HPX rescue from LTX growth inhibition in approximately one-third of cell lines with otherwise limited tissue specificity. The clinical dose-limiting toxicities of antipurine antifolates are to the bone marrow and gastrointestinal tract. In vitro models of these normal tissues were established, and the effect of DP on HPX rescue from LY309887 treatment was studied. Growth inhibition assays are not feasible in these primary cultures; therefore, an alternative assay, cellular ATP depletion, was validated in four tumor cell lines as a marker of de novo and salvage purine synthesis. In LY309887-treated cells, DP prevented HPX-mediated maintenance of ATP levels only in cell lines in which DP inhibited HPX rescue from antifolate cytotoxicity. Hence, ATP depletion is a reliable indicator of sensitivity of HPX transport to DP when direct cell growth measurement is impractical. In primary cultures of human hematopoetic progenitor cells and mouse small intestine, coincubation with HPX prevented LY309887-mediated ATP depletion, which was not blocked by DP. These data suggest that DP would not prevent HPX rescue from antipurine antifolate growth inhibition in sensitive normal tissues, whereas activity against certain solid human tumors would be maintained.  相似文献   

11.
Impressive gains have been made in the therapy of childhood acute lymphoblastic leukemia (ALL) in recent years such that remissions today are commonly achieved in up to 95% of patients and long term disease-free survival rates approach 70%. Methotrexate is a key component in ALL consolidation and maintenance therapies and is administered intrathecally in the prophylaxis and treatment of central nervous system leukemia. Critical determinants of methotrexate sensitivity and resistance (dihydrofolate reductase levels, methotrexate membrane transport, methotrexate polyglutamylation) previously described in cultured cells have recently been identified in lymphoblasts from children with ALL. Heterogenous expressions of increased dihydrofolate reductase or impaired methotrexate transport can be detected in both diagnostic and relapsed ALL specimens by flow cytometry with fluorescent methotrexate analogues. Lymphoblasts from children with ALL synthesize long chain polyglutamates and correlations have been established between the accumulation of methotrexate polyglutamates in ALL blasts and characteristic patient prognostic features. Variations in methotrexate polyglutamate accumulation may reflect changes in polyglutamate synthetic or degradative enzymes, or may be secondary to changes in methotrexate influx or dihydrofolate reductase levels. Other critical elements in treatment response to methotrexate include the dose and route of methotrexate administration, its catabolism to 7-hydroxymethotrexate, and the rate of methotrexate plasma clearance. A unique relationship exists between chromosome 21 and ALL leukemogenesis, and response to treatment including methotrexate. A better understanding of the molecular bases of methotrexate response and the development of methotrexate resistance in childhood ALL should facilitate further improvements in the effectiveness of methotrexate-based chemotherapy for this disease.  相似文献   

12.
Tight-binding inhibition of recombinant human monofunctional glycinamide ribonucleotide formyltransferase by Lometrexol (6R-5,10-dideazatetrahydrofolate) requires polyglutamation. LY254155 and LY222306 differ from 5,10-dideazatetrahydrofolate in the replacement of the 1',4'- phenylene moiety by a 2',5'-thiophene and a 2',5'-furan, respectively. Compared to Lometrexol, the thiophene and furan analogues had 25- and 75-fold greater inhibitory potencies against human monofunctional glycinamides ribonucleotide formyltransferase (Ki = 2.1 and 0.77 nM, respectively). The binding affinities of the thiophene and furan analogues for membrane folate-binding protein from human KB cells were 6- and 350-fold weaker than Lometrexol, respectively. Both the thiophene analogue and 5,10-dideazatetrahydrofolate inhibited the in vivo growth of murine 6C3HED lymphosarcoma, murine C3H mammary carcinoma, and human xenograft HXGC3, HC1, and VRC5 colon carcinomas by 95-100%. The thiophene analogue was efficacious against human xenograft PANC-1, a pancreatic carcinoma which was completely resistant to 5,10- dideazatetrahydrofolate. These novel antifolates represent the first monoglutamated tight-binding inhibitors of glycinamide ribonucleotide formyltransferase. By eliminating the need for polyglutamation, this class of antifolates may have clinical activity in the treatment of solid tumors expressing low levels of folylpolyglutamate synthetase or tumors resistant to antifolate therapy due to increased gamma-glutamyl hydrolase activity.  相似文献   

13.
Resistance to some (lipophilic) antifolates has been associated with P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). A possible relationship with non-P-gp MDR has not been established. We studied resistance to antifolates in SW-1573 human lung carcinoma cells, a P-gp overexpressing variant SW-1573/2R160 and a multidrug resistance protein (MRP) overexpressing variant SW-1573/2R120. In this study, thymidylate synthase (TS) inhibitors with different properties concerning the efficiency of membrane transport and the efficiency of polyglutamylation were tested for cross-resistance in SW-1573/2R120 and SW-1573/2R160 cells. Growth inhibition patterns in this cell line panel were measured by the Sulforhodamine B (SRB) assay. Resistance factors for TS inhibitors were: 2.4 and 0.4 for 5-fluorouracil (5FU), 18.8 and 8.8 for ZD1694, 17 and 0.7 for AG337, and 40 and 8.3 for BW1843U89 in SW-1573/2R160 and SW-1573/2R120, respectively. This study showed changes in the TS enzyme kinetics during the induction of doxorubicin resistance in both SW-1573 variants, resulting in 2-fold lower Km values for 2'-deoxyuridine-5'-monophosphate (dUMP) in both resistant variants compared to the parental cell line. TS activity, TS protein induction and TS mRNA expression all had 2-fold increased in the SW-1573/2R120 compared to the SW-1573/2R160. 3H-MTX influx was 2-fold lower in SW-1573/2R160 cells compared to SW-1573/2R120 and SW-1573 cells. In the SW-1573/2R160 cell line, an aberrant intracellular trafficking towards the target TS was observed, compared to SW-1573/2R120 and SW-1573 cells as measured by the TS in situ assay. The rate of TS inhibition by the TS inhibitors used in this study was similar in all cell lines. In conclusion, collateral sensitivity to 5FU and the lipophilic AG337 and cross-resistance to other antifolates were observed in non-P-gp MDR SW-1573/2R120 cells, as well as resistance to all antifolates in P-gp SW-1573/2R160 cells. The mechanism of resistance in SW-1573/2R160 cells possibly involves reduced influx and changes in intracellular trafficking routes. For the SW-1573/2R120 cell line, several changes related to the TS enzyme possibly play a role in the observed cross-resistance and collateral sensitivity pattern.  相似文献   

14.
We have carried out a physicochemical and computational analysis on the stability of the intercalated structures formed by cytosine-rich DNA strands. In the computational study, the electrostatic energy components have been calculated using a Poisson-Boltzmann model, and the non-polar energy components have been computed with a van der Waals function and/or a term dependent on the solvent-accessible surface area of the molecules. The results have been compared with those obtained for Watson-Crick duplexes and with thermodynamic data derived from UV experiments. We have found that intercalated DNA is mainly stabilized by very favorable electrostatic interactions between hydrogen-bonded protonated and neutral cytosines, and by non-polar forces including the hydrophobic effect and enhanced van der Waals contacts. Cytosine protonation electrostatically promotes the association of DNA strands into a tetrameric structure. The electrostatic interactions between stacked C.C+ pairs are strongly attenuated by the reaction field of the solvent, and are modulated by a complex interplay of geometric and protonation factors. The forces stabilizing intercalated DNA must offset an entropic penalty due to the uptake of protons for cytosine protonation, at neutral pH, and also the electrostatic contribution to the solvation free energy. The latter energy component is less favorable for protonated DNA due to the partial neutralization of the negative charge of the molecule, and probably affects other protonated DNA and RNA structures such as C+-containing triplexes.  相似文献   

15.
The 20 kDa xylanase from Bacillus circulans carries out hydrolysis of xylan via a two-step mechanism involving a covalent glycosyl-enzyme intermediate. In this double-displacement reaction, Glu78 functions as a nucleophile to form the intermediate, while Glu172 acts as a general acid catalyst during glycosylation, protonating the departing aglycone, and then as a general base during deglycosylation, deprotonating the attacking water. The dual role of Glu172 places specific demands upon its ionization states and hence pKa values. 13C-NMR titrations of xylanase, labeled with [delta-13C]glutamic acid, have revealed pKa values of 4.6 and 6.7 for Glu78 and Glu172, respectively. These agree well with the apparent pKa values obtained from a study of the pH dependence of kcat/Km and demonstrate that, at the enzyme's pH optimum of 5.7, the nucleophile Glu78 is deprotonated and the general acid Glu172 initially protonated. Remarkably, the pKa for Glu172 drops to 4.2 in a trapped covalent glycosyl-enzyme intermediate, formed by reaction with 2', 4'-dinitrophenyl 2-deoxy-2-fluoro-beta-xylobioside [Miao et al. (1994) Biochemistry 33, 7027-7032]. A similar pKa is measured for Glu172 when a glutamine is present at position 78. This large decrease in pKa of approximately 2.5 units is consistent with the role of Glu172 as a general base catalyst in the deglycosylation step and appears to be a consequence of both reduced electrostatic repulsion due to neutralization of Glu78 and a conformational change in the protein. Such "pKa cycling" during catalysis is likely to be a common phenomenon in glycosidases.  相似文献   

16.
17.
We examined the antitumor effects of two antifolate inhibitors of thymidylate synthesis, N-(5-[N-(3, 4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino ]-2-theno yl-L-glutamic acid (D1694; Tomudex) and 1843U89 as well as a folate-based inhibitor of purine synthesis, 5, 10-dideazatetrahydrofolic acid (DDATHF) on human soft tissue sarcoma cell lines having intrinsic resistance to methotrexate (MTX) due to impaired accumulation of polyglutamates of MTX (HS-16 and HS-42 cells) and to increased levels of dihydrofolate reductase and thymidylate synthase activity (HS-18 cells). Growth inhibition studies showed that ED50 values for D1694 and 1843U89 after a 24-h exposure were 11-19-fold and 22-222-fold lower, respectively, than those for MTX in HT-1080, a MTX-sensitive cell line, and the three MTX-resistant cell lines. In contrast, DDATHF was less cytotoxic than MTX in both the MTX-sensitive and the three resistant sarcoma cell lines. Uptake of D1694, 1843U89, or DDATHF was 2.5-4.5-fold higher than MTX in these sarcoma cell lines. However, D1694 and 1843U89, unlike MTX, accumulate in HS-16 and HS-42 cells as polyglutamate forms, reaching 70% of the total intracellular drug level after 24 h. DDATHF polyglutamates (9.4-24%) were less in the same cell lines. Much lower Km values for D1694 and 1843U89 as compared to MTX for folylpolyglutamate synthase were measured in the sarcoma cell lines, with Vmax values equal to or slightly higher than those obtained with MTX. D1694 and 1843U89 are significantly more cytotoxic than MTX in intrinsically MTX-resistant sarcoma cell lines as a result of extensive formation of polyglutamates. These two thymidylate synthase inhibitors should be evaluated in patients with soft tissue sarcomas.  相似文献   

18.
To investigate charge selectivity of peritoneal transport in CAPD, dialysate/plasma concentration ratios (D/P) were calculated for creatinine (Cr) and 3 amino acids with almost the same molecular weight but quite different charges: glutamic acid (Glu: negatively charged), glutamine (Gln: near neutrally charged) and lysine (Lys: positively charged). The study population consisted of 23 stable patients and 11 patients with peritonitis on CAPD. In the stable patients, the samples of dialysate were taken at 2 and 4 hours and blood samples were obtained at 4 hours after the infusion of 2 liters of 2.27 or 2.5% glucose CAPD dialysate; the samples of patients with peritonitis were obtained at 4.1 +/- 1.1 hours of dwell time. In stable patients, D/P of Glu was much lower than the values for Gln, Lys and Cr at both 2 and 4 hours (p < 0.01), and D/P of Lys was significantly lower than that of Gln (p < 0.01). There was no significant difference in D/P between Gln and Cr. In patients with peritonitis, D/P of Glu was also significantly lower than the values for Gln and Cr (p < 0.05 and p < 0.01), however, no significant differences were found between D/P of Lys and the values of Glu and Gln. Ratios of both [D/P Glu]/[D/P Lys] and [D/P Glu]/[D/P Gln] were much higher in peritonitis patients than in stable patients. In conclusion, peritoneal transport in stable CAPD patients shows charge selectivity, and the order of molecular charge for transperitoneal mobility among small solutes is neutral > positive > negative. The selectivity, however, is decreased or lost during peritonitis.  相似文献   

19.
The synthesis of seven 2,4-diamino-5,6,7,8-tetrahydro-7-substituted pyrido[4',3':4,5]furo[2,3-d]pyrimidines 1-6 are reported as nonclassical antifolate inhibitors of dihydrofolate reductase (DHFR) and compound 7 as a classical antifolate inhibitor of tumor cells in culture. The compounds were designed as conformationally restricted analogues of trimetrexate. The synthesis was accomplished from the cyclocondensation of 3-bromo-4-piperidone with 2, 4-diamino-6-hydroxypyrimidine to afford regiospecifically 2, 4-diamino-5,6,7,8-tetrahydropyrido[4',3':4,5]furo[2, 3-d]pyrimidine-7-hydrobromide (16). This in turn was alkylated with the appropriate benzyl halide to afford the target compounds 1-6. The classical antifolate 7 utilized 4-(chloromethyl)benzoyl-l-glutamic acid diethyl ester (17) instead of the benzyl halide for alkylation, followed by saponification to afford 7. Compounds 1-6 showed moderate inhibitory potency against DHFR from Pneumocystis carinii, Toxoplasma gondii, Mycobacterium avium, and rat liver. The classical analogue 7 was 88-fold more potent against M. avium DHFR than against rat liver DHFR. The classical analogue was also inhibitory against the growth of tumor cells, CCRF-CEM, and FaDu, in culture.  相似文献   

20.
We have isolated the pteridine reductase-1 gene (ptr1), from Trypanosoma cruzi (Y strain), located contiguous to the Trypanosoma cruzi P-glycoprotein-2 (tcpgp2). The gene encodes a member of the family of short-chain dehydrogenases, enzymes that are involved in several oxidoreduction reactions. One member of the family, pteridine reductase-1 (PTR1) has been previously described in Leishmania as being involved in antifolate resistance. The ptr1 gene from T. cruzi presents an 828 bp open reading frame, coding for a 276 amino acid protein with a predicted molecular mass of 30 kDa. The deduced amino acid sequence exhibited a remarkable homology with the ptr1 genes of Leishmania major and Leishmania tarentolae. Southern blot analysis using a specific probe indicated that T. cruzi PTR1 is encoded by a single copy gene located in two chromosomes of about 0.9 and 1.2 Mb. Western blot analysis using a polyclonal antiserum against recombinant PTR1 revealed that the protein is only expressed in the epimastigote forms of the parasite; we did not detect the protein either in the amastigote or trypomastigote forms. Purified recombinant PTR1 exhibits a NADPH-dependent pteridine reductase activity comparable with those described in Leishmania. Gene transfection experiments using the pTEX expression vector show that, under the conditions tested, T. cruzi PTR1 is involved in resistance to the methotrexate, aminopterin and trimethoprim antifolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号