首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed at elucidating the branching pattern of striatal and thalamic projections arising from prelimbic (Cg3) cortex in the rat. Small pools (5-15 cells) of neurons were microiontophoretically injected with biotin-dextran or biocytin and their labeled axons were individually reconstructed from serial horizontal sections immunostained for calbindin-D28k to delineate striatal patch/matrix compartments. Reconstruction of > 40 axons shows that all Cg3 corticofugal fibers, including corticothalamic axons from layer VI, course through the patch network in the rostromedial sector of the striatum. Corticostriatal projections arise from two types of layer V cells: (i) long-range corticofugal neurons, whose main axons reach the brainstem and/or spinal cord, and (ii) neurons arborizing into both striatum and claustrum, either ipsi-, contra- or bilaterally. The axons of these two types of neurons arborize profusely in striatal patches and only sparsely in the matrix. Layer VI neurons do not arborize in the striatum but target principally the thalamus. The same corticothalamic axon can innervate the anterior, rostral intralaminar and mediodorsal thalamic nuclei. These findings support the concept that no corticofugal fiber system exists that is solely devoted to the striatum. They also shed new light on how neural information from prelimbic cortex is conveyed to various subcortical limbic structures in the rat.  相似文献   

2.
The pattern of neurokinin-1 receptor-like immunoreactivity (NK-1Rir) was mapped in perinatal and adult mouse striatum by using a new polyclonal antiserum. NK-1Rir was detected in the differentiating regions of the ganglionic eminences on embryonic day 12.5 (E12.5). NK-1Rir structures were enriched in the striatal patch compartment between E16.5 and approximately postnatal day 3 (P3); distributed more uniformly, within portions of both the patch and matrix compartments on P7; and enriched in the matrix compartment in the adult. Analysis of the phenotype of NK-1Rir cells on P2, P7, and in the adult suggested that cholinergic cells accounted for the majority of NK-1Rir cells early postnatally, with increasing contributions from somatostatinergic cells later postnatally. In the adult, approximately half of NK-1Rir cells were cholinergic and half were somatostatinergic. The transient enrichment of NK-1R-bearing cells and processes in the patch compartment which contains cells that express substance P (SP), a putative ligand for the NK-1R, may be a consequence of compartment formation or may be functionally important for compartment development.  相似文献   

3.
The dopamine transporter (DAT) critically regulates the duration of the cellular actions of dopamine and the extent to which dopamine diffuses in the extracellular space. We sought to determine whether the reportedly greater diffusion of dopamine in the rat prefrontal cortex (PFC) as compared with the striatum is associated with a more restricted axonal distribution of the cortical DAT protein. By light microscopy, avidin-biotin-peroxidase immunostaining for DAT was visualized in fibers that were densely distributed within the dorsolateral striatum and the superficial layers of the dorsal anterior cingulate cortex. In contrast, DAT-labeled axons were distributed only sparsely to the deep layers of the prelimbic cortex. By electron microscopy, DAT-immunoreactive profiles in the striatum and cingulate cortex included both varicose and intervaricose segments of axons. However, DAT-labeled processes in the prelimbic cortex were almost exclusively intervaricose axon segments. Immunolabeling for tyrosine hydroxylase in adjacent sections of the prelimbic cortex was localized to both varicosities and intervaricose segments of axons. These qualitative observations were supported by a quantitative assessment in which the diameter of immunoreactive profiles was used as a relative measure of whether varicose or intervaricose axon segments were labeled. These results suggest that considerable extracellular diffusion of dopamine in the prelimbic PFC may result, at least in part, from a paucity of DAT content in mesocortical dopamine axons, as well as a distribution of the DAT protein at a distance from synaptic release sites. The results further suggest that different populations of dopamine neurons selectively target the DAT to different subcellular locations.  相似文献   

4.
5.
Early in development, the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed by growth cones, neuronal processes, and neuronal cell bodies. In rat striatum, PSA-NCAM expression becomes progressively restricted to pre- and postsynaptic membranes and is undetectable by postnatal day 25 (P25), i.e., after corticostriatal synaptogenesis. This study examined the effects of cortical lesions performed on P14, when the corticostriatal projection is already primarily unilateral and cortical inputs have not yet formed asymmetric synapses on striatal neurons. Rats were killed on P25, and PSA-NCAM expression was examined by immunoblotting and immunohistochemistry with light and electron microscopy. In contrast to the case in controls, PSA-NCAM expression was maintained in the striatum of lesioned pups. Ultrastructural studies showed that PSA-NCAM was present 1) in growth cone-like structures and neuronal processes and 2) in striatal neurons. Together with the presence of growth cones, the observation that the number of asymmetric synapses was unchanged in the denervated striatum suggests that axonal sprouting occurred in response to the lesion. This was confirmed by axonal labeling in the denervated striatum after injection of Fluoro-Ruby in the contralateral cortex. The data indicate that P14 cortical lesions affect PSA-NCAM expression in the developing striatum 1) by inducing a robust axonal plasticity resulting in the presence of immature presynaptic elements that contain PSA-NCAM and 2) by delaying the loss of PSA-NCAM expression in striatal neurons, suggesting that the lesion affects the time course of striatal maturation.  相似文献   

6.
Primary cell cultures from cerebral cortex, striatum and ventral mesencephalon obtained from rat fetal (embryonic day 17, E17) or postnatal (day 2, PN2) donors were grown either in media conditioned by subcultured astroglia from the same regions, an artificial trophic medium, normal human amniotic fluid, or in normal human cerebrospinal fluid. To estimate the presence of neuronal-like and non-neuronal cells, cell morphology and immunocytochemistry against microtubule-associated proteins and beta-tubulin were taken into consideration. The percentage of emitting neural cells and length of cell processes were determined after 24 hr in culture. Growth of cell processes in neuronal and non-neuronal cells from prenatal striatum was minimal compared with that in cerebral cortex and ventral mesencephalon, regardless of the culture condition. Nerve growth factor, basic fibroblast growth factor or epidermal growth factor did not significantly modify cell growth in E17 cultures, except for epidermal growth factor, which reduced the number of emitting cells in striatal cultures and increased it in cerebral cortex ones. Cultures derived from postnatal striatum showed a significant increase in neurite length when grown in an astroglial conditioned medium as compared to cultures derived from prenatal (E17) striatum. Results suggest significant regional differences in the brain regarding growth of cell processes at age E17, and reversal of striatal ability to grow cell processes by postnatal day 2. Reduced growth of cell processes showed by E17 striatum cultures was rather independent of the culture media. This fact could suggest that such early regional differences would depend on characteristics of sublineages present at this developmental stage, which would modulate the organization of regional neuropils. The restricted growth of cell processes in cultures from E17 striatum, no longer present in postnatal striatum, suggests that inputs to the striatum may modify expression of cell lineages at later stages of development.  相似文献   

7.
This paper reviews the organization of the avian and mammalian striatum. The striatum receives input from virtually the entire rostrocaudal and mediolateral expanse of the cerebral cortex. The corticostriatal projections appear to be glutamatergic, forming excitatory synapses in the striatum. Another major projection to the avian striatum that also appears to be glutamatergic stems from a set of nuclei in the dorsal zone of the avian thalamus that are comparable to the mammalian intralaminar, mediodorsal, and midline nuclei. Furthermore, the striatum receives a massive projection from dopaminergic neurons of the ventral tegmental area and substantia nigra in the midbrain tegmentum. In return, the midbrain tegmentum receives a direct GABAergic/substance P-ergic/ dynorphinergic projection from the striatum, as well as an indirect one formed by GABAergic/substance P-ergic/ dynorphinergic and GABA-ergic/enkephalinergic striatal neurons projecting to the pallidum in the first step, and pallidal GABAergic/LANT6/parvalbumin neurons projecting to the midbrain tegmentum in the second step. In addition to its projection neurons, the striatum possesses GABAergic and cholinergic interneurons. One motor output pathway of the striatum runs via the pallidum and dorsal thalamic ventral tier nulei to the motor cortex. In addition to this pathway, birds possess a major descending pathway from the basal ganglia to the tectum via the GABAergic nucleus spiriformis lateralis in the pretectum. On hodological and topological grounds, similar nuclei, although not GABAergic, can be found in mammals. Finally, an other striatal motor output is formed by a sequential GABAergic pathway from the basal ganglia via the substantia nigra to the tectum. In conclusion, it appears that the organization of the avian and mammalian basal ganglia is similar rather than different.  相似文献   

8.
The distribution of synapses formed by corticostriatal neurons was measured to determine the average connectivity and degree of convergence of these neurons and to search for spatial inhomogeneities. Two kinds of axonal fields, focal and extended, and two striatal tissue compartments, the patch (striosome) and matrix, were analyzed separately. Electron microscopic examination revealed that both kinds of corticostriatal axons made synapses at varicosities that could be identified in the light microscope, and each varicosity made a single synapse. Thus, the distribution of varicosities was a good estimate of the spatial distribution of synapses. The distance between axonal varicosities was measured to determine the density of synaptic connections formed by one axon within the volume occupied by a striatal neuron. Intersynaptic distances were distributed exponentially, except that synapses were rarely located <4 microm apart. The mean distance between synapses was approximately 10 microm, so axons made a maximum of 40 synapses within the dendritic volume of a spiny neuron. There are approximately 2840 spiny neurons located within the volume of the dendrites of one spiny cell (Oorschot, 1996), so each axon must contact 相似文献   

9.
Exogenous and endogenous glutamate has been shown to evoke dopamine (DA) release in the striatum using both in vitro and in vivo techniques. We hypothesized that stimulation of the prefrontal cortex (PFC) would phasically enhance striatal DA release via the glutamatergic corticostriatal pathway. To test this hypothesis, in vivo brain microdialysis was employed to measure extracellular concentrations of DA in the striatum during electrical stimulation of the PFC. Five rats were implanted with bilateral electrodes located in the medial PFC and dialysis probes in the dorsal striatum. Two days later the PFC of these awake, freely moving rats was stimulated first at 50 microA and then at 100 microA for 20 minutes at 2-hour intervals. Both currents significantly increased DA release. Extracellular DA rose rapidly during stimulation, peaked immediately afterward, and then slowly returned to baseline values. Dopamine reached 118% of baseline values with 50 microA stimulation and 138% with 100 microA stimulation. Histologic analysis using the fluorescent retrograde dye Fluoro Gold confirmed that cells projecting to the vicinity of the striatal dialysis probe originated in the vicinity of the PFC electrodes. These results provide direct evidence for phasic, excitatory modulation of striatal DA release by the PFC.  相似文献   

10.
Several lines of evidence suggest that the prefrontal (PF) cortex and basal ganglia are important in cognitive aspects of serial order in behavior. We present a modular neural network model of these areas that encodes the serial order of events into spatial patterns of PF activity. The model is based on the topographically specific circuits linking the PF with the basal ganglia. Each module traces a pathway from the PF, through the basal ganglia and thalamus, and back to the PF. The complete model consists of an array of modules interacting through recurrent corticostriatal projections and collateral inhibition between striatal spiny units. The model's architecture positions spiny units for the classification of cortical contexts and events and provides bistable cortical-thalamic loops for sustaining a representation of these contextual events in working memory activations. The model was tested with a simulated version of a delayed-sequencing task. In single-unit studies, the task begins with the presentation of a sequence of target lights. After a short delay, the monkey must touch the targets in the order in which they were presented. When instantiated with randomly distributed corticostriatal weights, the model produces different patterns of PF activation in response to different target sequences. These patterns represent an unambiguous and spatially distributed encoding of the sequence. Parameter studies of these random networks were used to compare the computational consequences of collateral and feed-forward inhibition within the striatum. In addition, we studied the receptive fields of 20,640 model units and uncovered an interesting set of cue-, rank- and sequence-related responses that qualitatively resemble responses reported in single unit studies of the PF. The majority of units respond to more than one sequence of stimuli. A method for analyzing serial receptive fields is presented and utilized for comparing the model units to single-unit data.  相似文献   

11.
The effects of the stage of donor embryos on the survival of grafts from different neuronal cell types have been well documented. Indeed, this parameter has been shown to be highly important in the survival and function of transplants of various tissues of the CNS. However this question has not been addressed in grafts of embryonic striatal tissue transplanted into animal models of Huntington's disease. In this study, rats which had received a unilateral ibotenic acid lesion in the dorsal striatum received grafts from a standard dissection of embryonic striatal primordium taken from donors of embryonic stage either E14, E16, E17 or E19 days. Three months after transplantation six rats from each group were killed for analysis of graft survival and morphology. The remaining animals in each group were killed between 10 and 14 months after grafting. Graft morphology was detected using a range of markers including: acetylcholinesterase and Cresyl Violet, the 32,000 mol. wt dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32), tyrosine hydroxylase and striatally-enriched phosphatase. All the grafts from different donor stages survived well at both time-points and Cresyl Violet staining indicated neuronal cell types spread throughout the grafts. The transplants were seen to have a characteristic "patchy" appearance with areas of dense AChE activity and DARPP-32 immunopositivity interspersed with areas of much lighter expression. These areas also co-localized consistently with striatally-enriched phosphatase and tyrosine hydroxylase expression, indicating that they comprised the striatal-like compartment of the graft (the so called P zones, containing cells of the mature striatum), and receiving specific afferent input from the host dopaminergic system. There was no significant difference in total graft volume, when comparing individual groups at both time-points from grafting. However, when comparing the volume of the P zones, the striatal primordium from the youngest donor stages (E14 and E16) produced grafts with a significantly higher proportion of striatal-like tissue. Therefore, in order to increase the proportion of striatal tissue within these grafts, tissue from younger embryonic donors should be used. This has important implications in the application of this model towards clinical trials in Huntington's disease.  相似文献   

12.
13.
We tested the hypothesis that the regional, cellular, and synaptic localizations of the glutamate receptor 1 (GluR 1) subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor are regulated developmentally in rat brain. By immunoblotting, GluR1 was first detected in whole brain at embryonic day E15.5, and levels increased progressively during late embryonic (E20) and early postnatal (P2-P11) days. Regionally, GluR1 increased in cerebral cortex but decreased in striatum with postnatal maturation. These changes occurred in the presence of increased presynaptic maturation, as determined by synaptophysin detection. By immunocytochemistry, distinct cellular populations showed different temporal profiles of GluR1 expression during postnatal maturation. The neocortex and hippocampus showed a progressive maturation-related enrichment of GluR1, whereas the striatum showed a gradual reduction in GluR1 during maturation. In cerebellum, GluR1 protein was expressed transiently at restricted times postnatally by granule cells (P0-P11) and Purkinje cells (P13-P19), but by P21 and thereafter these neurons had sparse GluR1 immunoreactivity. By immunoelectron microscopy. GluR1 was found in neurites, specifically in both dendritic and axon terminal components of developing synapses. GluR1 was clustered at the plasma membrane of apparent growth cone appositions, neuronal cell bodies, and dendrites of developing neurons. The presence of GluR1 at presynaptic sites dissipated with synaptic maturation, as GluR1 became confined to the somatodendritic compartment as maturation progressed. We conclude that the regional expression as well as the cellular and synaptic localizations of the GluR1 are developmentally regulated and are different in immature and mature brain. Differences in glutamate receptor expression and synaptic localization in immature and mature brain may be relevant to the phenomenon that the perinatal and adult brain differ in their regional vulnerability to hypoxia-ischemia and excitotoxicity.  相似文献   

14.
During development, there is a transient overproduction of axons in the corpus callosum; this overproduction of axons is due, in part, to a transient excess of neurons that send an axon through the corpus callosum. However, transient axonal branching could also contribute to the developmental overproduction of callosal axons. To investigate this possibility, we filled developing callosal axons in the Syrian hamster with the carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil). Light microscopic analysis showed that, indeed, developing callosal axons branch transiently in the hamster: branching was robust on postnatal day 0 (P0) and P3 (P0 = the first 24 hr after birth), less prominent on P6 and P8, and absent by P11. Immature callosal axons branched before or after crossing the midline and at all rostral-caudal and medial-lateral levels within the corpus callosum. The majority of callosal axon collaterals that were contained within individual 100-micron-thick sections were relatively short (mean = 15.1 microns) but some collaterals extended up to approximately 135 microns from the main axon trunk before passing out of the section in which they were observed. Nearly all of the collaterals emanated from the main axon trunk; higher-order collaterals were rare. Some callosal axon trunks had multiple collaterals. Branching callosal axons originated from multiple cortical areas, including area 17. Electron microscopic observations indicated that the processes designated as axon collaterals by light microscopic criteria would have been included in electron microscopic counts of developing callosal axons. Some callosal axon trunks and branches had ultrastructural features that suggested they were degenerating. In cats, developing callosal axons branch on embryonic day 57 (E57; the first 24 hr after conception = E0) and P0. Thus, it is likely that transient branching of immature callosal axons is a generalized feature of mammalian cortical development and that it contributes to the overproduction of callosal axons, albeit perhaps to varying degrees, in multiple species.  相似文献   

15.
Previous studies have demonstrated that the calcium-binding protein parvalbumin, is located within a population of GABAergic interneurons in the neostriatum of the rat. Anatomical studies have revealed that these cells receive asymmetrical synaptic input from terminals that are similar to identified cortical terminals and that they innervate neurons with the ultrastructural features of medium spiny cells. Furthermore, electrophysiological studies suggest that some GABAergic interneurons in the neostriatum receive direct excitatory input from the cortex and inhibit medium spiny cells following cortical stimulation. The main objectives of the present study were (i) to determine whether parvalbumin-immunoreactive neurons in the rat receive direct synaptic input from the cortex, (ii) to determine whether parvalbumin-immunopositive axon terminals innervate identified striatal projection neurons and (iii) to chemically characterize this anatomical circuit at the fine structural level. Rats received stereotaxic injections of biocytin in the frontal cortex or injections of neurobiotin in the substantia nigra. Following an appropriate survival time, the animals were perfused and the brains were sectioned and treated to reveal the transported tracers. Sections containing the neostriatum were treated for simultaneous localization of the transported tracer and parvalbumin immunoreactivity. Tracer deposits in the cortex gave rise to massive terminal and fibre labelling in the neostriatum. Parvalbumin-immunoreactive elements located within fields of anterogradely labelled terminals were examined in the electron microscope and corticostriatal terminals were found to form asymmetrical synaptic specializations with all parts of parvalbumin-immunoreactive neurons that were examined. Tracer deposits in the substantia nigra produced retrograde labelling of a subpopulation of striatonigral neurons. Areas of the neostriatum and nucleus accumbens containing retrogradely labelled neurons and parvalbumin-immunoreactive structures were selected for electron microscopy. Parvalbumin-immunopositive axon terminals formed symmetrical synaptic specializations with the perikarya of retrogradely labelled medium spiny projection neurons. Postembedding immunocytochemistry for GABA revealed that parvalbumin-immunoreactive boutons in synaptic contact with medium spiny neurons were GABA-positive. These data demonstrate directly a neural circuit whereby cortical information may be passed to medium spiny cells, via GABAergic interneurons, in the form of inhibition and provide an anatomical substrate for the feed-forward inhibition that has been detected in spiny neurons in electrophysiological experiments.  相似文献   

16.
The organization of axonal projections from the basomedial nucleus of the amygdala (BMA) was examined with the Phaseolus vulgaris leucoagglutinin (PHAL) method in adult male rats. The anterior and posterior parts of the BMA, recognized on cytoarchitectonic grounds, display very different projection patterns. Within the amygdala, the anterior basomedial nucleus (BMAa) heavily innervates the central, medial, and anterior cortical nuclei. In contrast, the posterior basomedial nucleus (BMAp) sends a dense projection to the lateral nucleus, and to restricted parts of the central and medial nuclei. Extra-amygdalar projections from the BMA are divided into ascending and descending components. The former end in the cerebral cortex, striatum, and septum. The BMAa mainly innervates olfactory (piriform, transitional) and insular areas, whereas the BMAp also innervates inferior temporal (perirhinal, ectorhinal) and medial prefrontal (infralimbic, prelimbic) areas and the hippocampal formation. Within the striatum, the BMAa densely innervates the striatal fundus, whereas the nucleus accumbens receives a heavy input from the BMAp. Both parts of the BMA send massive projections to distinct regions of the bed nuclei of the stria terminalis. Descending projections from the BMA end primarily in the hypothalamus. The BMAa sends a major input to the lateral hypothalamic area, whereas the BMAp innervates the ventromedial nucleus particularly heavily. Injections were also placed in the anterior cortical nucleus (COAa), a cell group superficially adjacent to the BMAa. PHAL-labeled axons from this cell group mainly ascend into the amygdala and olfactory areas, and descend into the thalamus and lateral hypothalamic area. Based on connections, the COAa and BMAa are part of the same functional system. The results suggest that cytoarchitectonically distinct anterior and posterior parts of the BMA are also hodologically distinct and form parts of distinct anatomical circuits probably involved in mediating different behaviors (for example, feeding and social behaviors vs. emotion-related learning, respectively).  相似文献   

17.
Ganglion cells with intraretinal axon collaterals have been described in monkey (Usai et al., 1991), cat (Dacey, 1985), and turtle (Gardiner & Dacey, 1988) retina. Using intracellular injection of horseradish peroxidase and Neurobiotin in in vitro whole-mount preparations of human retina, we filled over 1000 ganglion cells, 19 of which had intraretinal axon collaterals and wide-field, spiny dendritic trees stratifying in the inner half of the inner plexiform layer. The axons were smooth and thin (approximately 2 microm) and gave off thin (<1 microm), bouton-studded terminal collaterals that extended vertically to terminate in the outer half of the inner plexiform layer. Terminal collaterals were typically 3-300 microm in length, though sometimes as long as 700 microm, and were present in clusters, or as single branched or unbranched varicose processes with round or somewhat flattened lobular terminal boutons 1-2 microm in diameter. Some cells had a single axon whereas other cells had a primary axon that gave rise to 2-4 axon branches. Axons were located either in the optic fiber layer or just beneath it in the ganglion cell layer, or near the border of the ganglion cell layer and the inner plexiform layer. This study shows that in the human retina, intraretinal axon collaterals are associated with a morphologically distinct ganglion cell type. The synaptic connections and functional role of these cells are not yet known. Since distinct ganglion cell types with intraretinal axon collaterals have also been found in monkey, cat, and turtle, this cell type may be common to all vertebrate retinas.  相似文献   

18.
Transplantation of immature CNS-derived cells into the developing brain is a powerful approach to investigate the factors that regulate neuronal position and phenotype. CNS progenitor cells dissociated from the embryonic striatum and implanted into the brain of embryos of the same species generate cells that reaggregate to form easily recognizable structures that we previously called clusters and cells that disperse and integrate as single cells into the host brain. We sought to determine if the neurons in the clusters differentiate according to their final location or acquire a striatal phenotype in heterotopic positions. We transplanted dissociated cells from the E14 rat medial and lateral ganglionic eminences, either combined or in isolation, into the E16 embryonic rat brain. At all time points, we found clusters of BrdU- and DiI-labelled donor cells located in the forebrain and hindbrain, without any apparent preference for striatum. Immunocytochemical analyses revealed that cells in the clusters expressed DARPP-32 and ARPP-21, two antigens typically co-expressed in striatal medium-sized spiny neurons. In agreement with observations previously noted by several groups, isolated cells integrated into heterologous host areas do not express basal ganglia phenotypes. These data imply that immature striatal neuronal progenitors exert a community effect on each other that is permissive and/or instructive for development of a striatal phenotype in heterotopic locations.  相似文献   

19.
During development, telencephalic neural progenitors acquire positional specification and give rise to distinct structures such as the striatum and cortex. Here, we examine, in vivo, the influence of developmental stage, cell-surface molecules and regional differences along the dorso-ventral and antero-posterior axes on the selective incorporation of neural progenitors derived from different regions of the developing brain, utilizing a cross-species in utero transplantation paradigm. Striatal progenitors derived from the embryonic day (E) 12-14 mouse lateral ganglionic eminence (LGE) were observed consistently to incorporate into the developing striatum as early as 24-48 h following intraventricular injection into the E15-17 rat host. By removing cell-surface molecules from the LGE progenitors, the pattern of incorporation was remarkably different with no preferential striatal incorporation. Cortical progenitors with intact cell-surface molecules, by contrast, displayed little telencephalic (including striatal) incorporation as compared with precursors from the LGE. However, both progenitors from cortex and LGE incorporated widely into diencephalic and mesencephalic structures. The capacity for integration of precursors derived from the LGE and cortex gradually decreased during development of the host and was minimal in the postnatal day (P) 1 host. Unlike the telencephalic precursors, the vast majority of progenitors derived from the midbrain and cerebellar primordium (with cell-surface molecules intact) incorporated into diencephalic and midbrain nuclei with only a few cells observed in the telencephalon. These results demonstrate that incorporation of neural progenitors across the ventricular wall in the embryonic host is strictly developmentally regulated, dependent on their position along the antero-posterior axes and in the case of progenitors from the LGE is mediated by cell-surface molecules expressed on the transplanted cells.  相似文献   

20.
This investigation describes the schedule and regional distribution of astrocytic responses in striatum following deafferentation by unilateral frontal cortex ablation. In the ipsilateral deafferented striatum, glial fibrillary acidic protein and clusterin (sulfated glycoprotein-2) messengerRNA showed peak elevations by 10 days postlesioning (Northern blots). Vimentin messengerRNA responded faster, with a transient elevation by three days postlesioning. The messengerRNA for glial fibrillary acidic protein, clusterin and vimentin returned toward control levels by 27 days postlesioning. However, the neuronal marker growth-associated protein messengerRNA, was decreased at all postlesion times. By in situ hybridization, the increased glial fibrillary acidic protein messengerRNA and clusterin messengerRNA signals were localized mainly to the dorsal half of the ipsilateral deafferented striatum and followed the same schedule as found by Northern blots. Glial fibrillary acidic protein messengerRNA was widely diffused in the dorsal striatum and was excluded from fascicles of the internal capsule; a similar distribution was found for glial fibrillary acidic protein-immunopositive astrocytes. While clusterin messengerRNA signal showed a distinct clustering, its immunoreactivity appeared as deposits in the deafferented striatal neuropil; Western blots confirmed the immunocytochemical results. By in situ hybridization, vimentin messengerRNA was mostly localized to the cortical wound cavity dorsal to the deafferented striatum and overlapped the distribution of vimentin-immunopositive cells. These findings suggest a coordination of striatal astrocytic messengerRNA responses with the degeneration of corticostriatal afferents. We also compared these same parameters with those from published reports on the hippocampus after deafferenting lesions. Certain astrocyte molecular responses to deafferentation are detected about five days earlier in the hippocampus than in the striatum. This different schedule in response to decortication may pertain to differences in synaptic remodeling in the hippocampus vs striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号