首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactive diffusion between Sn–Ag solders and Cu was experimentally examined during soldering and isothermal annealing. Three sorts of solders with compositions of Sn–3.5Ag, Sn–3.5Ag–0.1Ni and Sn–3.5Ag–0.1Co were used for the experiment. Each solder was soldered on a Cu plate at 523 K (250 °C) for 1–60 s in a pure nitrogen gas, and then the solder/Cu diffusion couple was isothermally annealed at 423 K (150 °C) for 168–1008 h. Due to soldering, only Cu6Sn5 is formed at the interface in each diffusion couple. On the other hand, Cu3Sn is produced between Cu6Sn5 and Cu owing to the isothermal annealing. The composition of Cu6Sn5 is (Cu0.8Ni0.2)6Sn5 and (Cu0.93Ni0.07)6Sn5 on the solder and Cu3Sn sides, respectively, in the (Sn–3.5Ag–0.1Ni)/Cu diffusion couple, and it is (Cu0.9Co0.1)6Sn5 and (Cu0.99Co0.01)6Sn5 on the solder and Cu3Sn sides, respectively, in the (Sn–3.5Ag–0.1Co)/Cu diffusion couple. Different rate-controlling processes were suggested for the (Sn–3.5Ag)/Cu, (Sn–3.5Ag–0.1Ni)/Cu and (Sn–3.5Ag–0.1Co)/Cu diffusion couples. Finally, thermodynamic models were herein adopted to explore influences of the additives on the thermodynamic interaction of the component elements and the driving force for the growth of intermetallics.  相似文献   

2.
Samarium-doped ceria (SDC) thin films were prepared from Sm(DPM)3 (DPM = 2,2,6,6-tetramethyl-3,5-heptanedionato) and Ce(DPM)4 using the aerosol-assisted metal–organic chemical vapor deposition method. -Al2O3 and NiO-YSZ (YSZ = Y2O3-stabilized ZrO2) disks were chosen as substrates in order to investigate the difference in the growth process on the two substrates. Single cubic structure could be obtained on either -Al2O3 or NiO-YSZ substrates at deposition temperatures above 450 °C; the similar structure between YSZ and SDC results in matching growth compared with the deposition on -Al2O3 substrate. A typical columnar structure could be obtained at 650 °C on -Al2O3 substrate and a more uniform surface was produced on NiO-YSZ substrate at 500 °C. The composition of SDC film deposited at 450 °C is close to that of precursor solution (Sm : Ce = 1 : 4), higher or lower deposition temperature will both lead to sharp deviation from this elemental ratio. The different thermal properties of Sm(DPM)3 and Ce(DPM)4 may be the key reason for the variation in composition with the increase of deposition temperature.  相似文献   

3.
(100)-oriented 0.462Pb(Zn1/3Nb2/3)O3–0.308Pb(Mg1/3Nb2/3)O3–0.23PbTiO3 (PZN-PMN-PT) perovskite ferroelectric thin films were prepared on La0.7Sr0.3MnO3/LaAlO3 (LSMO/LAO) substrate via a chemical solution deposition route. The perovskite LSMO electrode was found to effectively suppress the pyrochlore phase while promote the growth of the perovskite phase in the PZN-PMN-PT film. The film annealed at 700 °C exhibited a high dielectric constant of 2130 at 1 kHz, a remnant polarization, 2Pr, of 29.8 μC/cm2, and a low leakage current density of 7.2 × 10− 7 A/cm2 at an applied field of 200 kV/cm. The ferroelectric polarization was fatigue-free at least up to 1010 cycles. Piezoelectric coefficient, d33, of 48 pm/V was also demonstrated. The results showed that much superior properties could be achieved with the PZN-PMN-PT thin films on the solution derived LSMO electrode than on Pt electrode by sputtering.  相似文献   

4.
Zr59Cu20Al10Ni8Ti3 is one among compositions of ZrCu-based alloys giving bulk amorphous material by cooling from the melt. Twin-roll casting enabling samples suitable for our inverted torsion pendulum has been processed in strips of about 0.60 mm thick.

Low temperature IF measurements have been conducted on a specimen from room temperature to −120 °C at different heating and cooling rates. IF spectra exhibit peaks at around −40 °C (cooling) and −10 °C (heating) which are sensitive to heating rates and to the number of cycle (heating and cooling). DSC measurements have also been performed to help interpret the phenomena linked to the IF peaks.  相似文献   


5.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

6.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

7.
The growth of CaF2 films with a thickness of approximately 3–4 nm on well-oriented Si(1 1 1) substrates by molecular beam epitaxy at temperatures between 410 and 560 °C were investigated by ex vacuo atomic force microscopy. Layer-by-layer growth producing atomically flat CaF2 surfaces has been observed in a very narrow growth temperature window between approximately 430 and 470 °C. Perfect triangular shaped islands of one CaF2 layer height are found on the surface with all corners aligned with the Si directions, indicating a pure B-stacking of the CaF2 film. Surprisingly, also the substrate steps have been overgrown without visible defects. Below 410 °C, two different island orientations revealed a mixture of A- and B-stacking areas in the films. Above 520 °C non-wetting of the CaF interface layer leads to epitaxial films with a rough surface morphology.  相似文献   

8.
The fracture behavior of the Zr55Al10Ni5Cu30 bulk amorphous alloy under uniaxial compression at high temperatures has been investigated. At room temperature, the fracture occurred along the maximum shear plane which declined by 45° to the direction of the applied load, and a crack with serrated edge appeared on the ridge of the veins at the fracture surface for the Zr55Al10Ni5Cu30 bulk amorphous alloy. At high temperatures, the compressive fracture surface of the Zr55Al10Ni5Cu30 bulk amorphous alloy became much rougher than that at room temperature and steps appeared on the fracture surface. With increasing temperature, a different pattern from the vein-like morphology appeared on the fracture surface, which is very similar to the lava-flow. This type of fracture pattern is most likely due to the adiabatic heating created by plastic flow.  相似文献   

9.
Chang Jung Kim   《Thin solid films》2004,450(2):261-264
Ferroelectric bismuth lanthanum titanate (Bi3.25La0.75Ti3O12; BLT) thin films were deposited on Pt/TiO2/SiO2/Si substrate by chemical solution deposition method. The films were crystallized in the temperature range of 600–700 °C. The spontaneous polarization (Ps) and the switching polarization (2Pr) of BLT film annealed at 700 °C for 30 min were 22.6 μC/cm2 and 29.1 μC/cm2, respectively. Moreover, the BLT capacitor did not show any significant reduction of hysteresis for 90 min at 300 °C in the forming gas atmosphere.  相似文献   

10.
Sol–gel derived Bi2Ti2O7 ceramic powders have been prepared from methoxyethoxides of bismuth and titanium (molar ratio of Ti/Bi = 1.23 and water/alkoxides = 1.31). The Bi2Ti2O7 phase was stable at a low temperature (700 °C), but it then transformed into mixed phases of Bi4Ti3O12 and Bi2Ti4O11 at 850–1150 °C. The single phase of Bi2Ti2O7 reoccurred at 1200 °C. Dielectric properties and ferroelectric behavior of samples sintered at 1150 and 1200 °C were examined. Under frequency of 1 MHz, samples sintered at 1150 and 1200 °C had a dielectric constant of 101.3 and 104.2, and a loss tangent of 0.0193 and 0.0145, respectively. Only the sample sintered at 1150 °C showed ferroelectric behavior, where remanent polarization is 3.77 μC cm−2 and coercive field is 24 kV cm−1. Thus, the Bi2Ti2O7 did not exhibit ferroelectricity, but the mixed phase of Bi4Ti3O12 and Bi2Ti4O11 did.  相似文献   

11.
Powders with nominal composition (Tl,Cr0.15)Sr2(Ca0.9,Pr0.1)Cu2O7 (Tl-1212) and Tc90 K were used to fabricate Ag-sheathed superconducting tapes employing the powder-in-tube (PIT) method. The tapes were subjected to intermediate mechanical rolling or pressing. Conditions that enhance the transport critical current density (Jc) of the tapes were investigated. Optimum annealing temperature and period together with uniaxial pressing are necessary to increase Jc of the Tl-1212/Ag tapes. Annealing at 910 °C for 0.5–1 h enhanced the 1212 phase formation and improved intergranular connectivity between grains, as well as to provide healing for the fractured structure caused by deformation process. A relatively longer annealing time at higher temperature gave rise to secondary phases and resulted in the decrease of Jc. Mechanical uniaxial pressing greatly densified the tapes core and thus led to closer contact between grains. At liquid nitrogen temperature and zero field, Jc of the pressed tapes annealed at 910 °C for 1 h is 3060±127 A cm−2. The initial drastic drop of Jc in low fields (<0.06 T) indicates the performance of the tapes is limited by weak links. No significant anisotropic transport properties were observed in applied magnetic field. This is due to the absence of texturing in the tapes as the grains are randomly oriented revealed through SEM micrographs.  相似文献   

12.
Ferroelectric SrBi2Ta2O9/SrBi2Nb2O9 (SBT/SBN) multilayer thin films with various stacking periodicity were deposited on Pt/TiO2/SiO2/Si substrate by pulsed laser deposition technique. The X-ray diffraction patterns indicated that the perovskite phase was fully formed with polycrystalline structure in all the films. The Raman spectra showed the frequency of the O–Ta–O stretching mode for multilayer and single layer SrBi2(Ta0.5Nb0.5)2O9 (SBNT) samples was 827–829 cm−1, which was in between the stretching mode frequency in SBT (813 cm−1) and SBN (834 cm−1) thin films. The dielectric constant was increased from 300 (SBT) to 373 at 100 kHz in the double layer SBT/SBN sample with thickness of each layer being 200 nm. The remanent polarization (2Pr) for this film was obtained 41.7 μC/cm2, which is much higher, compared to pure SBT film (19.2 μC/cm2). The coercive field of this double layer film (67 kV/cm) was found to be lower than SBN film (98 kV/cm).  相似文献   

13.
CaCu3Ti4O12 (CCTO) thin films were successfully deposited on Pt/Ti/SiO2/Si(1 0 0) substrates using pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CCTO thin films were greatly affected by the substrate temperature and oxygen pressure. Thin films with a (2 2 0) preferential orientation were obtained at the substrate temperature above 700 °C and oxygen pressure above 13.3 Pa. The 480-nm thin films deposited under 720 °C and 26.6 Pa have a fairly high dielectric constant of near 2000 at 10 kHz and room temperature. The values of the dielectric constant and loss and their temperature-dependence under different frequency are comparable with those obtained in the epitaxial CCTO films grown on oxide substrates.  相似文献   

14.
Thin film capacitors of SrTiO3 with RuO2 top and bottom electrodes on Si substrates were prepared by radio-frequency magnetron sputtering at substrate temperatures 500 and 700 °C and at various oxygen partial pressures. The thickness of the dielectric layer was varied between 200 and 900 nm. The impedance spectra of these samples could be interpreted with an equivalent circuit comprising a resistance and two RC-parallel elements in series. The dielectric permittivity r of the bulk grains, as extracted from the high-frequency semicircle in the Cole–Cole plot, was in the range 300–600. High oxygen contents lead to high values of r but also increase the grain boundary resistance.  相似文献   

15.
Hf(OCH2CH2NMe2)4, [Hf(dmae)4] (dmae=dimethylaminoethoxide) was synthesized and used as a chemical vapor deposition precursor for depositing Hf oxide (HfO2). Hf(dmae)4 is a liquid at room temperature and has a moderate vapor pressure (4.5 Torr at 80 °C). It was found that HfO2 film could be deposited as low as 150 °C with carbon level not detected by X-ray photoelectron spectroscopy. As deposited film was amorphous but when the deposition temperature was raised to 400 °C, X-ray diffraction pattern showed that the film was polycrystalline with weak peak of monoclinic (020). Scanning electron microscope analysis indicated that the grain size was not significantly changed with the increase of the annealing temperature. Capacitance–voltage measurement showed that with the increase of annealing temperature, the effective dielectric constant was increased, but above 900 °C, the effective dielectric constant was decreased due to the formation of interface oxide. For 500 Å thin film, the dielectric constant of HfO2 film annealed at 800 °C was 20.1 and the current–voltage measurements showed that the leakage current density of the HfO2 thin film annealed at 800 °C was 2.2×10−6 A/cm2 at 5 V.  相似文献   

16.
Electrochromic properties of nanocrystalline MoO3 thin films   总被引:1,自引:0,他引:1  
Electrochromic MoO3 thin films were prepared by a sol–gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO3 thin films. The effects of annealing temperatures ranging from 100 °C to 500 °C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO4/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO3 thin films heat-treated at 350 °C varied from 80% to 35% at λ = 550 nm (ΔT =  45%) and from 86% to 21% at λ ≥ 700 nm (ΔT =  65%) after coloration. Films heat-treated at 350 °C exhibited the best electrochromic properties in the present study.  相似文献   

17.
Annealing of the (1.1 nm Co90Fe10/2.2 nm Cu)×20 and (1.1 nm Co90Fe10/2.2 nm Cu85Ag10Au5)×20 multilayers at 235 °C improved their magnetoresistance as compared to the virgin samples. Annealing at higher temperatures resulted in degradation of the magnetoresistance effect. This observation raised the motivation of a detailed structural study using small-angle X-ray scattering, wide-angle X-ray diffraction, electron diffraction and transmission electron microscopy with the aim to link the structural changes in the system to the changes in the magnetoresistance. The structure studies have shown that the maximum of the magnetoresistance observed after annealing at 235 °C is related to the separation of Co90Fe10 and Cu, which are partly intermixed at interfaces after the deposition process. The decay of the GMR effect at higher annealing temperatures is caused by an increase of the interface roughness, which led in the Co90Fe10/Cu multilayers to occurrence of non-continuous interfaces and to short-circuiting of magnetic layers. In the Cu85Ag10Au5 multilayers, the combination of small-angle X-ray scattering and wide-angle X-ray diffraction has shown that Cu85Ag10Au5 did not form an alloy with the nominal composition: Only a part of Au and Ag was dissolved in the copper structure; the remainder of Ag and Au formed precipitates.  相似文献   

18.
The inhibition performance of PWVA/Sb2O3 complex inhibitor on carbon steel was studied in 55%LiBr + 0.07 mol L−1 LiOH solution. Results indicated that the complex inhibitor decreased both anodic and cathodic polarization current density and widened the passive potential region of carbon steel in test solution and can be classified as mixed inhibitor. The complex inhibitor exhibited excellent inhibition performance on carbon steel when the concentrations of PWVA and Sb2O3 were 300 and 200 mg L−1, respectively. With the solution temperature increasing from 145 to 240 °C, the corrosion rates of carbon steel increased from 4.71 to 120.66 μm y−1. In solution containing the complex inhibitor, the relationship between relative coverage ratio of inhibitor on carbon steel surface and inhibition efficiency at 145 °C was obtained as the equation μ = 0.94η, it was a direct proportion. This result proved that the complex inhibitor inhibited the corrosion of carbon steel by geometric blocking effect. When solution temperature was 160 °C, the adsorption Gibbs free energy of PWVA and Sb2O3 on carbon steel were −49.59 and −44.29 kJ mol−1, respectively. It indicated that the adsorption processes of PWVA and Sb2O3 on carbon steel surface were spontaneous processes. As a strong oxidant, PWVA facilitated the compact passive film comprising of FeO, Fe2O3 and Fe3O4 forming on the surface and itself was reduced to heteropoly blue. Sb2O3 adsorbed on carbon steel surface formed an adsorption film. PWVA and Sb2O3 behaved synergistic effect. The corrosion resistance performance of carbon steel in 55%LiBr + 0.07 mol L−1 LiOH solution was improved by PWVA/Sb2O3 complex inhibitor.  相似文献   

19.
The cyclic oxidation and acoustic emission (AE) tests were carried out for studying cracking behavior of oxide scales formed on Ti3SiC2-based ceramic at 1100 °C. A duplex oxide scale with an outer layer of pure TiO2 and an inner layer of a mixture of TiO2 and SiO2 was formed. The oxide scale did not spall from substrate during the cyclic oxidation at 1100 °C for 360 times. However, a great number of micro-cracks penetrating whole inner oxide layer were detected. AE test showed that the oxide scale did not crack during the isothermal oxidation at 1100 °C for 1 h, however, the scale cracked during the cooling stage. Comparing the growth rate and thickness between the oxide layers formed during the isothermal oxidation and cyclic oxidation, respectively, indicated that cracks in the inner oxide layer served as paths mainly for outward diffusion of titanium and for inward diffusion of oxygen, resulting in increased growth rate of the outer oxide layer. Because of entire and compact TiO2 consisted of outer oxide layer, and low thermal stress resulting from small mismatch of thermal expansion coefficients between the oxides and the substrate, Ti3SiC2 exhibited excellent cyclic oxidation resistance at 1100 °C for 360 cycles.  相似文献   

20.
Zr-rich PZT thin films were synthesized by metallorganic decomposition and their dielectric and pyroelectric properties were investigated with different ratios of zirconium/titanium and poling condition. All the films became effectively (1 1 1) textured and well crystallized at the annealing temperature of 700 °C. With increasing Zr content, coercive field increased and voltage dependent capacitance curve appeared asymmetrical, indicating the presence of antiferroelectric phase, PbZrO3, in film composition. The pyroelectric coefficient in the practically applicable temperature ranges of 20–60 °C was found to be maximum for the thin film with 0.85 mol of zirconium in PZT. Further increase in zirconium content led to severe deterioration in pyroelectric properties. The values of pyroelectric coefficient and figures of merit were greatly influenced by poling direction and temperature. The result was explained in terms of electric phase and state of polarization in film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号